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Preface 

The Task of the Book. This book is concerned with the diagnosis of the 
damage and faults of mechanical systems in the diverse fields of engi­
neering. It takes into consideration the various stages of the life cycle of 
a system from a diagnosis-orientated point of view and from a method­
ological one. In Fig. 1 it is indicated that analysis, testing and diagnosis 
is linked with all the stages of a system's life, with an enormous effect on 
costs, reliability and safety. What the title of the book promises is seen in 
Fig. 2. The contents are focussed on those system functions in which the 
system exists. 

Holistic modelling (see Fig. 2) is the key to the methodology discussed 
in this book. The holistic model includes the life behaviour (slow-time 
coordinate) as well as the classical dynamics (expressed with the fast­
time coordinate). Therefore the holistic model encompasses the system 
dynamics and its evolution. The possible interactions of a holistic model 
with the various stages of system design and development are shown in 
Fig. 2. The impact is shown in the lower part of Fig. 2 by the reduction of 
system life cycle costs, and the extension of the system life span. This is 
the main benefit of holistic modelling and diagnosis. 

Fig. 3 gives an overview, indicating the importance of diagnostics and 
of model-based diagnostics in particular. The various models are shown 
which lead to the holistic model for diagnosis. The goal is, finally, to 
perform a system condition assessment in the past and in the present 
through an adjusted mathematical model (adaptive model), and for the 
future by the use of prediction with the help of adaptive models. 

Model-supported diagnosis guarantees 
• safety 
• serviceability 
• the reduction of costs, and 
• it increases the lifetime. 

Additionally, it can be stated that 
• structural safety will be provided through adaptive (with respect to 

loading and state condition) modelling using measured data and the 
resulting prediction 

• the holistic viewpoint permits easy design including new materials 
• the uncertainties in general are minimized 
• the assessment is made objectively. 
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Fig. 0.1. Stages of system evaluation and testing during the life cycle (modified from Blanchard 
1989) 

Contents. The first chapter introduces the subject, and describes its objec­
tives and scope. 

In Chapt. 2 the foundation of system properties, modelling, monitoring, 
damage, symptoms, models and methods of damage detection, localization 
etc., that are common in classical diagnostics using signature analysis are 
reviewed. 

Chapter 3 provides the fundamental guidelines for measurements and 
signal processing as a fundamental aspect when applying the contents of 
Chapt. 4. 

Chapter 4 contains the principal part of the book: the knowledge base 
in the form of verified and validated mathematical models which are ad­
justed to the states of the system at current life times: using adaptive 
models. These models describe the current state of the system, permit a 
comparison with previous states, and therefore serve the purposes of fault 
detection, localization, and the cause-finding of faults and their assessment, 
predictions due to future forcings and trend predictions. 

The diagnostic decision-making based on the validated models is dis­
cussed in Chapt. 5. It is based on thresholds, and on standard deviations 
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Preface VII 
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Fig. 0.2. The various system stages and the effect of the holistic model 

of global and local quantities coming from the mathematical models, both 
in deterministic and probabilistic decision-making. Chapter 5 also con­
tains a brief discussion of the assessment to be made with the resulting 
consequences. This chapter is tailored especially for the purpose of the 
book. 

Finally, some methods are illustrated by examples in Chapter 6. 
The book should provide the foundation for the diagnosis, so that the 

reader will be able 
1. to develop a formulation for his particular application, and 
2. to find stimulation for further applications and investigations. 
It will not give recipes for model aided diagnosis for special cases, but 
possible solutions are discussed. 
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VIII Preface 
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Preface IX 

Requirements on the Reader. Although Chapt. 2 repeats some known facts 
of modelling and classical diagnostics, the reader should have some ex­
pertise in at least one of the following topics and some basic knowledge 
in all the others: 
• design, properties and operation of the system under diagnostic con-

siderations 
• statistics, stochastics, estimation theory, and reliability 
• signal analysis and signature analysis 
• classical diagnostics (using signature analysis) 
• mathematics including matrix theory. 

Acknowledgement. The authors would like to express their gratitude to 
their colleagues and friends Yakov Ben-Haim (Haifa, Israel) and James T. 
P. Yao (College Station, TX, USA) for their critical and helpful discussions 
on various aspects of the subject. 
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CHAPTER 1 

Introduction 

1.1 
The Intention 

The word "system" is used here for a technical construction (object) in its 
operational environment from, for instance, civil, mechanical, automotive, 
coastal, ship, or aerospace engineering. The forces acting on the system 
during its utilization affect the system's properties. An example is the stiff­
ness degradation through a crack due to cyclic forcing, and the hardening 
effect of high static forces at the beginning of a fatigue test. If the system 
property changes reduce safety, lifetime or other aspects of performance, 
and comfort, then failures (defects, faults, damage) can occur. Because 
the safety effects of failures can be catastrophic, early failure detection, 
localization and assessment are necessary during the system's life. 

From the diagnostic point of view, the utilisation stage within the sys­
tem life cycle is characterized by monitoring, usually starting with a weak 
point observation, continuing by considering some alert thresholds and 
by exceeding them, beginning with measurements. This is a condition­
dependent routine measurement in order to detect system changes, what­
ever they are. This will be explained and introduced later. If system changes 
are detected, and if they are significant, then these changes have to be lo­
calized. The causes have to be found out, their effects have to be assessed, 
and diagnosis of failures has to be performed as the basis of maintenance 
and actions. 

The book deals with the diagnosis of failures in systems, based on 
reliable mathematical models using observations of the system. Here, di­
agnosis means failure detection, localization, and the assessment of its 
severity as well as the forecasting of its evolution. The prediction of the 
system condition is included, too. 

1.2 
The Concept 

Figure 1.1 shows the concept of model-aided diagnosis in principle l . 

System analysis yields the prior mathematical model, which generally is 
uncertain due to the approximations included and due to unawareness. 

I Maintenance [3) is outside the scope of this book. 
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2 1. Introduction 

OBSERVED FAULTY 
SYSTEM - SYSTEM - SYSTEM 

OBSERVED 

! ! ! 
PRIOR IMPROVED RESIDUALS 

MATH. MODEL r-- MATH. MODEL r----- OF 
SYMPTOMS 

1 1 
SENSITIVITY 

NO ANALYSIS, VERIFIED 
CATALOGUE OF - SENSITIVITY QUALITY FAULT 
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! FAULT 
DETECTED 

THEORETICAL MODEL 
STUDIES OF ;---

POSSIBLE 
ADJUSTMENT, 

FAULT 
FAULTS WITH f-- LOCALIZATION 

THEIR EFFECTS ETC. 

Fig. 1.1. The concept in principle 

This model can be used to study possible physically based, assumed faults 
and their effects on the system. The result is then a catalogue of possible 
faults with their causes. This prior knowledge is essential in diagnosis. In 
addition, related symptoms (which are sensitive quantities for failure detec­
tion), features, and patterns, can be investigated and taken as a knowledge 
base for later diagnostic purposes. After this first step, system identification 
(ID) is applied in order to verify (in the sense of confirmation, checking 
and not finding the truth) and validate the prior mathematical model so 
that it is usable. Measurements of the unfaulty system performed at a pre­
determined life time 00 are used to correct this prior mathematical model, 
which will be used for verification and validation, or, if necessary, for 
improving the above-mentioned catalogue of possible faults. This verified 
and validated mathematical model is now the reference knowledgebase for 
comparison with mathematical models describing future modifications of 
the system observed due to faults. The third step includes the measurement 
of the state-modified system due to faults (as an indirect measurement of 
the system changes). If these measurements show significant changes in 
the symptoms chosen, a state-dependent mathematical model can be ob­
tained by applying system identification, which is adjusted to the current 
system state, and which also results in a verified and validated mathemat­
ical model. The interesting quantities of this state-dependent model, when 
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1.2. The Concept 3 

compared with the corresponding quantities of the reference model, will 
give feature residuals for the decision concerning the existence of signif­
icant modifications, which is equivalent to failure/damage detection. The 
next step to be done is diagnosis, which means fault localization, assess­
ment and finding out possible (distinguishable) causes, before deciding on 
actions involving further system operations. 

At every stage of the system's life 0 an adjusted mathematical model has 
to be performed which represents the faulty system in evolution and serves 
for simulations and predictions as a basis for decisions. If the various life 
times are denoted by Oi, i = 0, 1, ... , and the corresponding models with 
.Al(Oa =: .Ali, then it can easily be seen that the models .Al(Oi) represent 
time-invariant approximations at times 0i of a time-variant model .Al of 
the system under consideration. In addition, the known models .Al(Oi), i = 
1(I)Nl at times till ON1 , enable one to set up an extrapolated model.AlN1 +1 

for approximations of fault evolution and for trend predictions. 
As can be concluded from the paragraph above, system identification 

[4-7] is the key to model-based fault detection, diagnosis and further deci­
sions. Figure 1.2 [8] indicates an extended (due to model updating) system 
identification methodology for damage detection, localization, assessment 
and decision. The upper part in Fig. l.2 represents the input/output rela­
tionship, including a possible modification of the system due to failures. 
Measurements of the system outputs, sometimes also of the system in­
puts, and perhaps combined with additional laboratory test results, give 
the most informative data set available for the (existing) system, provided 
that the measurements are performed professionally. Measurements are 
generally incomplete for various reasons (e.g., a sensor cannot be fastened 
at a necessary point or it fails, or a natural mode is missed in the dy­
namic response due to the existing excitation), and the measured values 
are erroneous. Therefore excitation and measurement problems, data ac­
quisition, processing and reduction including error minimization play an 
important role. Incompleteness of the measured data base can be reduced, 
for example, by prior knowledge from system analysis. Combining theo­
retical with experimental analysis (tests, measurements) by the application 
of system identification will result in a verified and validated mathematical 
model. This means that a model with known confidence and sufficiently 
small errors is available. This updated mathematical model describing the 
system dynamics at the desired stage of the life time is the best available 
knowledge-base for failure localization and diagnosis, and consequently 
for decision-making purposes. In special cases, predictions of system con­
ditions can include limit states. 

Here system identification is a part of Test And Computer Aided 
Modelling (TACAM) using estimation methods and, of course, prior knowl­
edge from system analysis. The mathematical models are uncertain. The 
uncertainties exist in the inputs, in the model structure as well as in its 
parameters if the model is structured2• Any distortion and environmental 
conditions not modelled will contribute to these uncertainties. In addi-

2 The structure of a mathematical model refers to the type of equation written. 
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1.3. Modelling 5 

tion, the test and measurement equipment can change the system under 
observation. Therefore this modified system has to be modelled in order 
to avoid systematic errors (bias). Uncertainties also have to be modelled 
either deterministically and/or stochastically in order to complete the avail­
able information. This also completes the knowledge base. 

TACAM can be summarized as follows: it 
• is based on direct and/or indirect measurements, where the latter means 

an enlargement of the observation space, 
• can be handled by a minimum set of measurements (and no more 

pick-ups than in classical monitoring) 
• provides an insight into the dynamic process and into the system prop-

erties, 
• already includes the detection and localization of faults, and 
• has the capability of performing cause-finding and assessment. 

Decision analysis is another important field in this context. Decisions can 
be formulated deterministically or probabilistically. Multi-hypothesis de­
cisions as well as adaptation of the testing procedure play an important 
role. 

The major advantages of model-based diagnosis are the following: 
• The utility of limited measurements can often be greatly extended when 

supplemented by prior knowledge from theoretical analysis of the sys­
tem. 

• It allows one to probe the dynamic process and the physical properties 
of the system (e.g. simulations in order to find countermeasures), un­
like classical signal evaluation of unstructured (nonparametric) models, 
such as spectral densities. 

• For complicated systems, usable models provide the best knowledge 
base for the localization and assessment of anomalous behaviour. 

1.3 
Modelling 

Modelling is an addition to the tests/measurements fundamental to model­
supported diagnosis. Therefore a brief summary should remind us of some 
important facts to be considered. 

1.3.1 
Modelling of Systems 

Mathematical modelling of the dynamic system behaviour can start with a 
momentary (time t = const.) model, i.e. a static model. Time dependency 
will be introduced by mechanical principles. Fig. 1.3 shows the principal 
steps in modelling. The physical model contains the physically relevant 
characteristics resulting from the given forces (type, direction etc.) and the 
environmental effects with respect to the goal of the analysis. The math­
ematical formulation of the physical model is the next step, which often 
only can be made approximately. An example is the complex behaviour 
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Fig. 1.3. System analysis, steps of modelling 

of dissipative processes, which are often modelled as viscous damping due 
to the simplicity and convenience of this representation. In system analy­
sis the models are generally structured; that means they are parametrical. 
Parameter determination uses drawings and material lists and takes into 
account the type of connections. Then the solution method and the algo­
rithms applied are chosen, and with predictions and simulations the model 
has to be verified and validated. 

Modelling itself is a hierarchical process, which is briefly described in 
Fig. 1.4 and concerns the third block of Fig. 1.3. After the physical model 
of th.e system has been established, the construction of the mathematical 
model starts with the choice of the general class of model to be devel­
oped. This requires consideration of boundary conditions, the level of 
detail required for the intended application, and the number of input and 
output variables to be used. Then the model structure is defined, which 
means specifying the type of functional relationship among the variables, 
whether integral or differential equations, spatially discrete or continuous, 
etc. These relationships concern the equations of motion, the measurement 
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Fig. 1.4. Modelling as a hierarchical process 
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equations, and possibly some constraints. The next level in the modelling 
process is the definition and determination of the parameters required in 
the model structure which has been chosen. The result, the mathematical 
model of the system, should be physically interpretable. 

The types of mathematical models are manifold. The mathematical 
model as a partial differential equation (PDE) for field descriptions with an 
infinite number of degrees-of-freedom (DOF) has the advantage that it can 
describe not-closed systems, such as the half space. Spatially discretized 
models, which lead to ordinary systems of differential equations (ODE) 
with a finite number of DOF, can only describe finite domains. Conse­
quently, closed systems are not represented, except that special boundary 
conditions defining additional submodels are introduced. It is only rarely 
that analytical solutions exist. Consquently, numerical procedures have 
to be chosen. Additionally, not all systems can be modelled analytically. 
Therefore a priori discretization (spatial, temporal) will be performed. Spa­
tially discretized models lead to ODE for single-DOF (SDOF) or multi-DOF 
(MDOF) models, which can be time-continuous or time-discrete. Each 
numerical handling implies a discretization. Therefore dealing with dis­
cretized models leads to no loss of generality in practice. With principal 
(generalized) coordinates in mind, an MDOF model can be transformed 
(modal transformation) under particular pre-assumptions into a set of 
SDOF models. In the following it is mainly spatially discretized models 
that will be considered. 

The classical equations of motion (number n) are formulated as ODE 
of second order, while in the state space domain the equations are of first 
order (but with 2n equations). Differential equations of motion can be 
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Fig. 1.S. Incomplete mode shape description using two nodes 

expressed as integral-differential equations (IDE) or as integral equations 
(IE). Sometimes the latter formulations are advantageous for numerical 
reasons [9]. 

Models should be as simple as possible and as complex as necessary. 
Some practical suggestions on the procedure of modelling are discussed 
in the following. 
• The order of a spatially discrete dynamic model must be chosen tak­

ing into account the types of external forces (e.g., duration, frequency 
content), and the dynamic responses to be represented. If the dynamic 
response is thought of as decomposed into eigenmodes, the model must 
reflect the necessary number of effective modes with their shapes, nodal 
points or lines, and curvatures, the latter, for example, for a beam in 
bending is related to the local bending moment, which is dominated by 
certain modes, while other modes have little effect on the stress-related 
failures of the beam. 

• Within spatial discretization, the nodes and coordinates have to be 
chosen 
- from a static point of view (e.g. with respect to stress peaks) 
- from a dynamic point of view (band-limited model ~ limited num-

ber of DOF) 
- taking into consideration the description of deflections and curva­

tures (see Fig. 1.5) 
- so that nodes of the theoretical analysis coincide with measuring 

points (in order to avoid later interpolation and to minimize expen­
diture) 

- so that numerical requirements are fulfilled (e.g. for integration with 
regard to discontinuities). 

• Inertia forces and related distributions can generally be calculated with­
out any difficulty by using the available routines. The spatially dis­
cretized results should be consistent with the restoring force model. 
For example, in finite element models the inertia and stiffness matrices 
should be consistent (based on the same displacement field). A com­
mon error is to use a lumped-mass matrix together with a finite element 
stiffness matrix. 

• Modelling of dissipative forces is critical. Only tests can provide a re­
alistic description. Fittings and joints are common sources of friction 
processes. For small displacements the connections often can be mod­
elled as rigid from a dynamic point of view. For slightly larger displace-
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ment amplitudes the friction can sometimes be linearized and modelled 
with viscous and other types of damping representations3 • 

• Modelling of external forces has to take into account the force direction 
which influences the physical model (type of stressing of the system 
elements, e.g. as a plate or a disk). 

• The choice of coordinates of in the equations of motion defines the 
coupling of the equations. Strong coupling increases the computational 
expenditure and can introduce numerical difficulties (counter-measure: 
introduction of principal coordinates for diagonalizing the matrices). 

• Model inaccuracies (structure, parameters) restrict the accuracy of the 
prediction. Consequently, one should determine the number of signifi­
cant digits which correspond to the given accuracy of the model. 

• Submodelling4 is useful in many cases. However, it is difficult to obtain 
the correct boundary conditions; often a coarse total model is needed 
in order to find out valid submodel boundary conditions. 

Models of linear systems are distinguished by various frequency ranges. 
The low frequency range is characterized by a modal type response, i.e. the 
dynamic response is determined by the first eigenmodes of the system. In 
the intermediate frequency range the expansion of the dynamic response 
requires a very large number of modes. It is therefore charactereized by 
a high modal density. Asymptotic methods can be used in the high fre­
quency range, and transfer functions are often used for the mathematical 
description. The external excitation determines the frequency range to be 
considered. When the excitation is limited to a specific frequency inter­
val a band-limited mathematical model can be used. The actual frequency 
intervals corresponding to these ranges are system specific. For example, 
the high frequency range of eigenvibrations of a radar tower is generally 
below the low frequency range for the vibrations of a diesel engine. 

In addition, propagating and standing waves have to be distinguished, 
dependent on whether a finite wave propagation velocity is important in 
the (damage) process under consideration. The type of model must be 
chosen to fit the purpose. For example, the d' Alembert solution represents 
propagating waves, while the Bernoulli solution can only describe standing 
waves (except in special cases). 

Non-linear behaviour is much more difficult to model than linear be­
haviour, and it is sometimes important in damage processes. The model 
structure in general is unknown. We will restrict ourselves to linear and 
linearized models. However, piecewise linearization around the working 
point results in a model that cannot be used to describe any non-linear 
behaviour. 

3 Sometimes, friction is used for making rigid joints, i.e. high-strength bolts. 
4 Submodelling refers to the decomposition of the system into subsystems. The subsystems 
may be macro-elements, elements etc. 
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Fig. 1.6. Aim, overview and classification of modelling 

The dynamics of linear time-invariant models (0 = 0i = const_) can be 
represented by spatially discrete models in the standard form, suppressing 
the indices with respect to life time 0, 

Mu(t) + Bti(t) + KuCt) = Nf(t) , (1.3.1) 

where uCt) is the displacement vector and fCt) is the input vector. The 
quadratic inertia, damping and stiffness matrices M, B, K are constant on 
the time scale of the dynamics of the system, but may evolve during the 
lifetime of the system, representing the damage and ageing processes. N is 
a rectangular input matrix specifying the components (spatial coordinates) 
upon which non-zero external forces act. 

The model quality depends on the knowledge and experience possessed 
by the system analyst, both of the system to be modelled and of the related 
process. 

The aims of system analysis and the corresponding quantities are de­
scribed in Fig. 1.6 based on [10]. Input/output relations are classified 
for various subject areas of application. Direct problems are distinguished 
from indirect or inverse problems. In direct problems the model and the 
input quantities are given, and the dynamic response is sought. In inverse 
problems the output and input quantities are given and the model is de­
sired. The latter is called system identification or the design problem. The 
input problem, which is not indicated in this figure, is the inverse prob­
lem of finding the input which produces a specified output when parts of 
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the model are known. Diagnosis is classified as an inverse problem with 
emphasis on the identification of system modifications. 

An important difference between static and dynamic models should 
be pointed out, because it plays a very large role in diagnostics. Static 
models should, in general, predict stress distributions including the max­
ima. Therefore these models are highly detailed, and if a finite element 
(FE) model is used it consists of many static DOF (typically, several or­
ders of magnitude higher than that of dynamic models). Dynamic models 
are usually based on energy considerations, which involves integral, scalar 
quantities. In consequence, such a dynamic model is generally unable to 
represent stress peaks, which can be decisive in diagnostics. 

The resulting model is, as already mentioned, uncertain with regard to 
its structure and its parameters. This means that possible errors are un­
known in location and quantization. Each model must therefore be verified 
and validated [11]. Verification means the reconstruction of the used data 
within the applied quality criterion (e.g within the least squares sense). 
Validation concerns the homomorphy between system and model with re­
spect to the investigated behaviour. Verification, for example, can be based 
on the process dataS, while validation includes the model structure and the 
parameters. Verification and validation can be done using measurements, 
which reduces the uncertainties and results in a mathematical model with 
sufficiently small errors: TACAM. 

1.3.2 
Modelling of Uncertainties 

The diagnosis of faults must be performed in the face of systematic errors 
and uncertainties. The latter may occur in the domains of 
1. model structure 
2. model parameters 
3. the type of failures which can occur 
4. fault evolution, and 
5. measurements. 
The analyst usually has prior information which characterizes these un­
certainties. Model-based formulation and evaluation by a diagnostic algo­
rithm requires explicit mathematical representation of these uncertainties. 
In other words, mathematical modelling of the uncertainties is as impor­
tant as the modelling of the system dynamics. 

Three fundamentally different approaches can be used in the modelling 
of uncertainty. The choice of an approach depends primarily on the nature 
and extent of the available information. 

Probabilistic models. Point processes, stochastic processes, and time series 
fall into this category. Here many references are available, such as [5, 12, 
13]. The realization of a probabilistic model typically requires a substantial 

5 The process is defined only by the input and output quantities. 
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amount of either theoretical or empirical information, i.e. knowledge of 
the stationarity or ergodicity of the process, knowledge of the probability 
density functions, etc. Careless use of such models can lead to erroneous 
results, especially in the diagnosis of rare events. 

However, probabilistic methods, stochastical procedures and estimators 
are well established, well-known within the engineering community and 
accepted, although approximations are used and assumptions often have 
to be made which cannot be proven easily. Several probabilistic models 
for decision-making will be presented in Chapt. 5. 

Fuzzy-set models. Since the theory of fuzzy sets was presented by Zadeh 
(1965) [14] it has been well developed and applied to solve many prac­
tical problems (e.g. [15-17]). In particular, the application of fuzzy sets 
is useful in cases where explicit computation cannot be easily made and 
statistical data are insufficient for the formulation of probabilistic mod­
els. Mathematical fuzziness means multivaluedness or multivalence. It is 
expressed by the membership functions mA : X ---+ [0, 1]. With x€X the 
membership value measures the elementhood (or degree) to which ele­
ment x belongs to set A. Although such methods have been investigated 
in diagnostics recently (e.g. see [18, 19]) more work needs to be done 
in this direction. Several promising approaches using fuzzy logic will be 
presented and discussed in Chap. 5. 

Convex models. Another non-probabilistic methodology for representing 
uncertainty is based on convex models. A convex model is a set of func­
tions with chosen properties, so that each function represents an allowed 
realization of an unknown or uncertain event such as a specific failure or 
an uncertain input. The analyst's prior information on the range of vari­
ation of the uncertain event is invested in specifying the structure of the 
set. In other words, the structure of a set specifies the properties shared 
by the functions belonging to the set. 

Convex models are usually reserved for those situations where uncer­
tainties are characterized by only fragmentary information. An extensive 
discussion of convex modelling is found in [20]. Three convex models are 
brieft.y described in order to introduce this method. 

The simplest is the uniform-bound convex model: let TJ(t) represent the 
element of the set to be considered (e.g. amplitude, geometrical imperfec­
tion), then it is defined as 

?}eVB = {TJ(t): ITJ(t) I ~ ij} (1.3.2) 

The quantity ij is the defined bound. The convex model ?}eVB is the set of 
all TJ(t) not exceeding ij. 

In a more detailed analysis the bound ij may vary in a range from 'PI 
to 'P2. Then an envelope-function, ij('P, z) could be defined: 

ij(t) = { ~ 'P rf- ['PI, 'P2] 
'P E ['PI, 'P2] 

(1.3.3) 
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where Tj is a constant. This is the envelope-bound convex model: 

;]foEB = {-1J(q>, z): 11J(q>, z)1 ::: Tf(q>, z)}. (1.3.4) 

A brief discussion of the convex-model representation of uncertainties 
in the input function, j(t) in Eq.( 1.3.1), will conclude this discussion. 
Consider, for example, uncertain ground motion during an earthquake. 
Many convex models are available for this purpose [21]. The integral­
energy-bound model will now be introduced. The input function, j(t), 
deviates from a nominal input vector, j°Ct), where the time-integral of the 
energy of the deviation is bounded: 

(1.3.5) 

This set represents the uncertainty in the realization of the input. It in­
cludes strongly transient functions, since the integral is bounded, but not 
the instantaneous magnitude of the functions. Furthermore, one can con­
strain the uncertain inputs to a certain time interval by choosing the 
energy-bound p2 Ct), so that it vanishes outside this interval. In practical 
applications, the determination of ij and p2(t) is an important considera­
tion. 

This brief discussion of convex models may be summarized by explain­
ing how convexity comes into play. 

One factor contributing to the tendency towards convexity of uncer­
tainty-sets is the dearth of information about the uncertain phenomenon. 
When only very limited information about the phenomenon is available, 
such as envelope-bounds or sparse spectral information, and we ask for the 
set of all the functions consistent with this information, the result is that 
such sets are often convex. An additional cause of convex uncertainty-sets 
is discussed in Sect. 2.1 of [20]. 

Convex models are only mentioned as an interesting tool. However, they 
are not used in the following. They are intended to provide stimulation 
for further research and possible application. 

1.3.3 
Holistic Modelling 

In addition to the general modelling principles, which take the existing 
uncertainties into account, model adjustment at life time ei , M(e i ), with 
time-invariant models (1.3.1) is fundamental for model-based diagnosis. 
However, the background is the holistic model, which will be summarized 
briefly (Fig. 1. 7). 

L may be the model operator defined in an appropriate domain. It is 
applied to the total dynamic response x(r, e, t), defined in a corresponding 
domain, with r the spatial coordinate, e the life time (slow time), and t 
the time of dynamics (fast time). The equation of motion then follows as 

L[x](r, e, t) = j(r, e, t), (1.3.6) 
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L (r,e,t) x(r,t) = f (r,e,t) 
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EXCITATIO~ 
HOLISTIC MODEL 

RESPONSE L(.) 
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SYMPTOMS S(r,e) "-

/ 

Fig. 1.7. Holistic model and its responses 

where f(.) designates the external force. 
As expressed above, the short-term dynamic response can be considered 

for 0 = 0i = const., resulting in x(r, Oi, t) =: xi(r, t) as the current (with 
respect to 0) dynamic response. Symptoms are sensitive quantities for the 
detection and observation of system modifications and their evolution. 
Symptoms can be performed in the deterministic case by applying the 
operator ¢ to the total dynamic response, and in the case of stochastic 
models with the expectation operatorEd.}, applied to a sample dependent 
on t: 

S 0 _ { ¢[x(r, 0, t) 1 in the deterministic case, 
(r, ) - Ed ¢[x(r, 0, t)]} in the case of statistical models. 

1.4 
Summary 

(1.3.7) 

The concept of model-supported diagnosis is mainly based on adjusted 
mathematical models. The adjustment is performed to various state con­
ditions given by measurements. Such a verified and validated mathemat­
ical model with sufficiently small errors is the best available knowledge 
base to the system. System identification methods thus have to be applied. 
The following are essential: prior knowledge of system analysis, and the 
introduction of the slow-time coordinate (life time) and the fast-time co­
ordinate, the latter used for the description of the classical dynamics of 
the system. The distinction between the evolution and the dynamics of the 
system permits the modelling of the system at various discrete life times 
through time-invariant models, which means with constant coefficients of 
the ODEs within a limited interval of the related discrete life time. 
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CHAPTER 2 

Review of Tools and Concepts of Diagnosis 

Symptom-based diagnosis is described in [22-24]. Symptoms are sensi­
tive quantities with respect to a fault, and they are used for fault detec­
tion and also for diagnostic purposes. Classical diagnostic methods are 
signal-based and signature-supported. Simple signature analysis employs 
data-reduction methods, for example counting the number of peaks of 
a spectral function. In general, signature analysis involves scalar infor­
mation. Multiple features are applied independently. Extended signature 
analysis uses vectorial information and patterns. A set of features will be 
evaluated and used for decision and assessment. 

In the following, damage and faults 'will be described with consideration 
of their effects on the models used (parameters, structures). The resulting 
symptoms will be derived and then discussed. Finally, damage initiation 
and evolution in operating systems are considered. 

2.1 
Damage, Faults and their Descriptions 

The conceptions of damage and faults will be introduced and discussed. 
Evolving faults lead to system modifications, and consequently to model 
modifications. These model modifications and their effects on the dynamic 
variables are investigated in detail, which is fundamental in diagnosis. 

2.1.1 
General Discussion 

Damage is the result of a defect, failure or fault. These words will be used 
more or less equivalently!. Damage is (life) time-dependent; it may concern 
the total system or parts of it. Additionally, one has to distinguish between 
repairable and non-repairable faults. What is damage? It is a reduction 
of the ability to fulfil a pre-specified operation/function. This definition 
includes safety requirements as well as comfort conditions. 

The various types of physically elementary faults and defects are 

1 However, defined differences do exist: 
• defect: any absence of a characteristic of an item from the requirements, 
• failure: termination of the ability of an item to perform a required function. After failure 

the item has a fault. 
• fault: the inability of an item to perform a required function, 
• damage: injury or harm which reduces the value or serviceability. 
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• holes or voids, 
• cracks, 
• fractures, 
• surface discontinuities, 
• mass reduction by abrasion and (all types of) erosion, 
• mass increase (e.g. by pollution), 
• material ageing etc. 

Various causes of faults are 
• the lack and/or reduction of strength due to 

- external forces including unexpected forces, e.g. century earthquake 
- environmental forces including, for example, chemical effects, and/ 

or 
- human errors with respect to design, detail construction and con-

struction work (--+ initial failures) 

• defects due to operation (e.g. wear, abrasion) 
• sedimentation, and 
• vandalism. 

Many causes not explicitly enumerated are contained in the above list, 
such as resonance, self-excitation (as flutter), improper handling due to 
partial ability (e.g. colour-blindness), accidents etc. It should be noted that 
a fault can cause a feedback effect on the input quantity (--+ interaction 
problems). In addition, one has to take into account special effects, such as 
the time-dependent domino effect. For example, if one essential element in 
a truss fails, then this may lead to the failure of other members. Another 
example is an earthquake, which not only causes buildings to collapse 
due to its wave propagation from the epicentre, but which also may cause 
electrical installations and gas pipes to fail and result in fire and subsequent 
explosions. 

The forcing of the system which induces stresses is essential here. Lim­
iting stresses and stress concentrations can cause damage. In consequence, 
a detailed analysis (e.g. FE calculations, multi-body (MB) models, fracture 
analysis) leads to an assessment of the resulting stresses. Satisfying the 
design criteria concerning the strength and strain properties, structural 
elements, and the total system with respect to external forces and to force 
paths will protect the system to a great extent against failures from design 
loading. 

The above-mentioned faults will modify the initial mathematical model 
describing the undamaged system. The following models of system faults 
will be considered: 
• model parameter modifications including changes of boundary con­

ditions2; 

• model structure modifications, such as the introduction of additional 
DOF, or of non-linearities. 

2 Continuous models include the boundary conditions in the Green's functions [9] and dis­
crete models in the flexibility influence matrix. 
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A crack, for example, which opens and closes during a cyclic motion leads 
to non-linear behaviour: both sides of the crack may come into contact 
during motion, inducing impacts and friction. The crack results in addi­
tional DOF in the related FE-model. 

These system modifications will result in modified energies, eigenquan­
tities, stress and acoustic levels etc. compared with, for instance, the non­
modified system. This can be seen, for example, by looking at modified 
state conditions and by comparing the state vector at the life time Oi+1> 
xT(t, Oi+d = {uT(t, Oi+1),UT(t, Oi+1)}T, with the state vector determined at 
time Oi, x(t, Oi)T = {uT(t, Oi), uT(t, Oi)}T. A comparison of states or symp­
toms at times Oi+1 and Oi is only rational if a significant (e.g. abrupt) 
change occurred during this time interval. Slowly varying changes must 
be detected by comparing the corresponding quantities with those of a 
chosen reference model describing a system condition much younger than 
Oi+1 - 0i. The coordinate 0 for the life time is often called the slow time 
coordinate, compared with the fast time coordinate t (see Figure 2.1). 

Here the term 'comparison' is chosen instead of the term 'correlation', 
because the transformation into the parity domain3 can be done determin­
istically as usual. 

In the following only such faults will be considered which affect the 
mathematical model as follows: 
1. Parameter modifications which also include modifications of boundary 

conditions by 
• stiffness reduction 
• inertia increase/decrease, 
• damping modification (often an increase; however, pre-stressed con­

crete behaves in a very complicated way [25]). 

2. Model structure modifications by 
• an increase of the number of DOF within a finite frequency interval 

(see the example in [26]), 
• modification of the type of damping, 
• the change from linear to non-linear behaviour, generally connected 

with additional forcings, e.g. impacts occuring through the closing 
of cracks. 

3 Generation of residuals. 
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In this way, damage and faults are defined in the parameter domain 
and in the model structure domain. However, detected parameter changes 
must be (re-)transformed into the fault domain in order to determine the 
type of damage, and to distinguish between different faults, which means 
knowing their relation to the real construction. This subject is discussed 
in Chap. 5. Figure 2.2 illustrates the three domains of faults. 

In the (real and existing) system, faults may appear as mentioned in 
the Figure. These faults are mapped in the related model by parameter 
and/or model structure changes. Finally, the introduced diagnostic model 
is based on symptom measurements (monitoring), and it results in the 
condition assessment of the system. 

2.1.2 
Parameter Modifications: Preliminary Examples 

The effect of failure-related parameter modifications on the model will 
be studied by sensitivity investigations using linearized differential error 
analysis, and non-linearized error analysis by including higher order terms 
in the corresponding Taylor series, or by recalculations. The results of the 
sensitivity analysis are amplification factors and functions which indicate 
the extent to which modified physical parameters, for example stiffness co­
efficients, influence dynamic variables, for example the dynamic response 
of the system. Therefore sensitivity analysis can also be used to reduce 
the number of parameters to be considered in modification investigations 
by neglecting those of less importance. Additionally, the quantities of sen­
sitivity analysis are used in the formulation of the system identification 
procedures (model adjustment to different states) discussed in Chap. 4. 
They are also included in the learning phase of diagnosis. 

The following examples illustrate the sensitivity of model quantities due 
to parameter modifications. The next subsection contains a more general 
perspective. 

Eigenmode sensitivity due to stiffness modifications along a beam. It is 
easy to derive linearized sensitivity quantities for a uniform cantilever, 
especially for the eigenvalues with respect to stiffness modifications tlB 
along the entire length 10 • The normalized span coordinate is designated 
by ~ = x/lo. We are now interested in normal mode modifications with 
respect to a bending stiffness modification. Asymptotically, the normal 
mode of order k can be expressed analytically (time independent) by [9] 

(2.1.1) 

where Ak is an integration constant, .At = w~/LoI6/Bo the eigenvalue with 
the eigenfrequency Wk, /Lo the mass per unit length and Bo the bending 
stiffness of the nominal beam. The variation of the modal displacement 
due to a bending stiffness modification tlB thus follows: 

tlwk(~)= ddwk tlB= - [Ak.Ak~tlB cos(.Ak~)]/(4Bo). 
Bo 

(2.1.2) 
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Fig. 2.2. The domains of faults: the faults are mapped differently in diagnostics 

The modification of the normal mode is asymptotically proportional to 
• the eigenvalue Ak (increasing sensitivity with increasing k) 
• the related coordinate ~ 
• the ratio !:J.BjBo. 

The maximum modification of lh(~) along ~ is given by !:J.wk(~) = 0, where 
the prime denotes differentiation with respect to f Comparing Eqs. (2.1.1) 
and (2.1.2) reveals that !:J.Wk(~) is proportional to !:J.wk(~), !:J.Wk(O ~ wk(~)' 
Consequently, !:J.wk(O "-' !:J.Wk"(O = 0: the maximum modification of 
Wk(~) is asymptotically connected with the bending moment (the second 
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Fig. 2.3. Local stiffness reduction of a beam 

- x 

Fig. 2.4. One-sided elastically supported beam 

derivative) equal to zero, however with the shear force Qk(~) ~ wk'(~') =j=. o. 
It also follows that max~ wk({) does not correspond to the maximum am­
plitude Wk(O (wk({) = 0). We obtain not only quantitative information 
about the sensitivity of potential quantities (to be measured), but also an 
insight into the physical relationships involved. 

Local stiffness modifications of a beam. The local stiffness modification of 
a beam is illustrated in Fig. 2.3. 

The effect of this stiffness reduction can be modelled in different ways. 
The beam can be partitioned into two parts at the point of stiffness re­
duction and connected with a torsional spring with an equivalent spring 
constant [27]. Another procedure is the integration or summation of the 
flexibilities under consideration of the discontinuities at the corresponding 
reduced stiffness interval. The use of FE models (MDOF) is also practical. 

If static unit point loads are taken, the optimum location for maximum 
deflection is the free end of the beam. Loading the free end is the best 
choice for detecting the presence of a local stiffness reduction. However, 
a single load is insufficient for localizing this reduction and assessing its 
severity. One may employ hierarchical adaptive procedures for seeking the 
location and degree of stiffness reduction, for example as described in [28]. 

Boundary condition modification of a one-sided elastically supported beam. 
The Green's function (flexibility influence function) of the Bernoulli beam 
shown in Fig. 2.4 is 

rmin(x,~) (x - 71)({ - 71) 
G(x, {) = GBC<x, {) + Jo B(71) d71· (2.1.3) 
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B(x) is the stiffness distribution. It is the deflection along the elastic axis4 

at point x due to a vertical force at point g. GBC describes the influence 
function with respect to the boundary conditions [9]: 

xg 1 
GBC = k2 + r;' (2.1.4) 

The differential modification of GBC for small changes in the spring coef­
ficients is 

(2.1.5) 

For a rotational stiffness modification, Ilk2' a unit force at g produces a 
deflection at x which is proportional to Ilk2 and to the product xg. On the 
other hand, a translatory stiffness modification, Ilkl' produces a deflection 
which is independent of its position. 

Reaction forces of a beam supported at both ends. Shear forces of a 
Bernoulli beam are proportional to the third spatial derivative of the 
displacements. Consequently, if the stiffness reduction is modelled by an 
equivalent spring, then this spring will produce a discontinuity of the shear 
force distribution. Additionally, it will show the location of discontinuity 
very clearly. So the shear force distribution can serve as a symptom for 
the localization of such a defect. The shear forces will directly affect the 
reaction forces of a beam supported at its ends. Following the procedure 
of looking for the shear forces of a bending beam as a sensitive feature 
(symptom), we can then consider the reaction forces at the boundaries 
[29] as sensitive quantities for boundary condition modifications. 

It can be concluded from the relationship between natural modes and 
boundary conditions, as described in [30], that only the eigenquantities of 
low-order modes are sensitive to boundary influences. This statement is 
used in the first example of this subsection, in [26] and in [31]. 

Eigenfrequency shifts for various structural modifications. Figures 2.5 and 
2.6 show examples of eigenfrequency shifts. 

Figure 2.5 shows the percentage eigenfrequency changes of the first 
five modes of a simply supported beam with the support at two different 
locations and with location distances a and a'. It can be noted that some 
shifts are positive and some are negative, and that the shifts are rather 
large. 

Figure 2.6 shows a cantilevered beam which is supported at one end and 
additionally attached by a rotational spring, k2• The related spring constant 
k2 is taken as being parametrical. Fig. 2.6 gives the eigenfrequency shifts 

4 It is defined as the axis where vertical forces induce only bending moments. 
5 It is known that the differentiation with respect to the spatial coordinate can be substituted 
by integration, taking the equation of motion into consideration [9]. 
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Fig. 2.5. Eigenfrequency shifts due to modified support distances 
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Fig. 2.6. Eigenfrequency shifts in percentages of a beam with bending conditions as indicated 
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relative to the eigenfrequency related to k2 -+ 00. The shifts for the five 
modes shown are relatively large. The curves show that the percentage 
changes of the eigenfrequencies of the lower modes are greater. 

Eigenfrequencies are not always as sensitive as indicated in these exam­
ples. This can be seen by taking the Rayleigh quotient and by modifying the 
stiffness and/or the mass distribution locally. The displacements expressed 
by the corresponding eigenfunctions/vectors, which will not change greatly, 
or expressed by admissible functions/vectors (taken from the unmodi­
fied model), yield slightly modified generalized (integral) stiffnesses and 
masses. 

2.1.3 
Parameter Modifications: General Analysis 

Several general problems are now discussed that arise from the sensitiv­
ity of modal quantities and dynamic responses due to model parameter 
modifications. Finally, subsystem modelling will be applied. 

Modal sensitivity. Here the eigenvalue problem of the associated un­
damped system will be considered. The inertia changes are denoted by 
IlM and the stiffness changes by ilK. M and K are the unmodified inertia 
and stiffness matrices. Uo is the corresponding modal matrix with column 
vectors equal to the eigenvectors Uoi, and Ao the diagonal matrix of eigen­
values AOi. The corresponding changes of the modal quantities are denoted 
by IlU and IlA. Then the eigenvalue problem of the modified system reads 

-(M + IlM)(Uo + dU)(Ao + IlA) + (K + IlK)(Uo + dU) = O. (2.1.6) 

Now the generalized mass matrix normalized as 

(2.1.7) 

is introduced, where I is the unity matrix, and the matrix of generalized 
stiffnesses which follows with (2.1.7) from the matrix eigenvalue problem 
of the unchanged undamped model as 

(2.1.8) 

The eigenvectors are linearly independent and form a basis set, so that the 
eigenvector changes IlU can be expressed as a linear combination of the 
nominal eigenvectors with a matrix A: 

dU:= UoA. (2.1.9) 

With the decomposed eigenvector modifications with respect to the un­
modified normal modes (2.1.9) the linearized Eq. (2.1.6) yields 

(2.1.10) 
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The introduction of the generalized matrices of the parameter modifica­
tions, 

(2.1.11) 

(2.1.12) 

Equation (2.1.10) leads (the main diagonal elements of AoA and AAo are 
equal) to: 

(2.1.13) 

Equation (2.1.13) indicates that, to first order parameter modifications, 
the eigenvalue changes are independent of the eigenvector changes, and 
depend only on the nominal modal quantities and on the parameter mod­
ifications. 

Taking into account that A is a diagonal matrix, the non-diagonal ele­
ments of Eq. (2.1.10) result for distinct eigenvalues in 

. D.kgik - AOkD.mgik . k 
aik= A A ' I 1= , 

ok - Oi 
(2.1.14) 

and 

(2.1.15) 

while employing the generalized orthogonality properties (2.1.7) and 
(2.1.8). Therefore the modifications D.A and D.D are expressed in a lin­
earized way by the generalized stiffness and inertia modifications. 

The effects of modified boundary conditions are included in the above 
formulations. However, an additive formulation with flexibility coefficients 
G = K- 1, if existent, is preferable, as can be seen from what has already 
been stated in the examples. 

Sensitivity investigations with respect to initial conditions are discussed 
in [5]. Sensitivity analysis for the eigensolutions of the model of the 
damped system can be dealt with easily in the state space [5]. 

Sensitivity of the stiffness and the flexibility matrices with respect to modal 
quantity changes. The inverse problem of how, for example, the prior stiff­
ness or the flexibility matrix are affected by modal quantity modifications, 
is considered as follows: the spectral decompositions of the flexibility and 
stiffness matrices as given in [5] read 

(2.1.16) 

n 

K = L AOimgiMlloiU6iM, M = MT. (2.1.17) 
i=l 
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In the flexibility formulation the dyadic products are weighted with 
l/(Aoimgi) = 1/(w6imgi) = l/kgi' which are decreasing factors with in­
creasing index i and correspondingly numbered eigenvalues. The recipro­
cal statement holds true for the stiffness formulation. However, one has to 
pay attention to the normalization, and therefore to the variation, of mgi. 
If the normalization, for instance, is changed compared with (2.1.7) to 

AN 1 A 
UOi:= Uoi 

I JAOimgi I 
(2.1.18) 

it follows 

n 

G= L~U~T: (2.1.19) 
i=1 

this is a sum of dyadic products explicitly without any weighting. Therefore 
a check must be made to determine whether the lower modes essentially 
determine G, while the higher modes determine K. However, if one looks 
at the decomposition of the kinetic energy of a free vibrating system ap­
proximated by a sufficient number of DOF, it is known that the higher 
terms are negligible. Therefore it seems to be preferable for local stiffness 
modifications to look for higher modes. And inversely, if higher modes are 
important one should choose the stiffness formulation. The correspond­
ing statements concerning the lower modes hold true for the flexibility 
formulation. 

The decomposition of the flexibility matrix of the modified system 
results from the generalized orthogonalization and leads to the recipro­
cal sensitivity formulation, as the parameter modifications depend on the 
eigenquantity changes: 

(2.1.20) 

In Eq. (2.1.20) the modified generalized matrix of stiffnesses is no longer 
diagonal; in consequence, no explicit sum can be given. When the gener­
alized stiffness matrix Kg = Ao (see Eq. (2.1.8» is substituted, it follows 
in a first order approximation that 

and 

G+~G 

~G 

A All 1 A AT 
(Uo + ~U)(Ao - Ao ~KgAO )(Uo + ~U) , 

~GT =~UAoIU~ + UoAol ~UT. (2.1.22) 

In experimental analysis Eq. (2.1.22) serves for the modification (design) 
problem. 

The equation can be applied directly for the eigenquantities of hys­
teretically damped systems using a complex stiffness matrix K + jD. 
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Another treatment of the sensitivity of parameter matrices with respect 
to modal quantity changes uses the modified modal quantities 

(2.1.23) 

with the modified stiffness matrix 

Km := K+~K (2.1.24) 

assuming ~M == O. The matrix eigenvalue problem (2.1.6) now reads 

(2.1.25) 

and with (2.1.24) 

~KUm = -KUm + MUm~Am. 6 (2.1.26) 

This is called [32] the modal residual matrix R, indicating modifications 
in the stiffness matrix (2.1.24) due to modified (measured and therefore 
known) modal quantities. Right-hand multiplication of (2.1.26) with U;;;I = 
U~ for symmetric parameter matrices directly yields 

(2.1.27) 

Dynamic response sensitivity. Sensitivity investigations of the forced re­
sponses of the model of the damped system can be handled more easily in 
the frequency domain than in the time domain. The Laplace transform is 
chosen with the Laplacian variable s. With zero initial conditions and the 
Laplace transforms 

U(s) := ~{u(t)}, P(s):= ~{f(t)}, (2.1.28) 

the equation of motion (1.3.1) reads 

(s2M + sB + K)U(s) = NP(s). (2.1.29) 

With the dynamic stiffness matrix 

S(s) := s2M + sB + K (2.1.30) 

Eq. (2.1.29) converts to 

S(s)U(s) = NP(s). (2.1.31) 

6 See Sect. 4.2.3; the modal residual vector is identical to the equation error of the matrix 
eigenvalue problem written in the modal vectors. 
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A modification in the dynamic stiffness matrix AS(s) and the nominal, 
unmodified external excitation pes) gives the equation of motion 

[S(s) + AS(s)][U(s) + AU(s)] = NP(s) (2.1.32) 

or in linear,ized form 

AS(s)U(s)= - S(s)AU(s) =: AP(s), (2.1.33) 

which can be interpreted as an additional force. This relationship can be 
used for determining the modified dynamic response, 

AU(s)= - S(S)-I AS(s)U(s) , (2.1.34) 

which requires only the knowledge of the unmodified model and the dy­
namic stiffness modification. Alternatively, AS(s) can be determined if lin­
early independent dynamic responses due to corresponding force vectors 
[33] (see localization of modifications, Sects. 2.2.6 and 2.1.4) are known. 
Equation (2.1.34) states that the additional force (2.1.33) is weighted by 
the transfer matrix 

H(s) := S(S)-I (2.1.35) 

and that Equation (2.1.34) can be used to estimate the change (e.g. by 
taking the norm) AU(s) for an assumed AS(s) only with knowledge of the 
unmodified model. If the changes due to AS(s) are significantly observable, 
this quantity can serve as a symptom. 

The above equations can also be written as 

[S(s) + AS(s)]U(s)=NP(s) - S(s)AU(s) =: NP(s) + AP(s) (2.1.36) 

which verifies the statement that the modified system produces an addi­
tional force. We shall return to these equations for fault detection and 
localization in Sect. 2.2.6. 

Subsystem modelling. Subsystem modelling is useful for various purposes: 
to reduce the orders of the models to be analyzed, to control the degree of 
coarseness of the model parametrization, to investigate submodel (compo­
nent) sensitivity to parameter modifications, and to localize faults in the 
corresponding submodels. Let us continue with the associated undamped 
model and assume a stiffness matrix decomposition in the form 

I 

K = K(aK) = I: aKiKi, (2.1.37) 
i=1 

where the vector aK contains the real dimensionless design parameters aKi. 
We require the sensitivity of the eigenvalues AOr and eigenvectors uor of 
the eigenvalue problem 

(-AOrM + K)uor = 0, r = l(l)n, (2.1.38) 
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with respect to variations of the real factors aKi. By inserting (2.1.37) into 
the matrix eigenvalue problem (2.1.38), it follows by differentiation that 

(2.1.39) 

Assuming symmetric matrices, normalizing the eigenvectors as mgr = 1, 
and taking into account Eq. (2.1.38), left-hand multiplication of the above 
equation with the transposed eigenvector of Uor produces 

(2.1.40) 

The differential change of the rth eigenvalue with respect to the ith sub­
model of the stiffnesses depends only on the generalized submodel stiffness 
related to the unmodified eigenvector Uor. Here the first order modifica­
tion of the eigenvalue is independent of the eigenvector modifications (in 
agreement with Eq. (2.1.13)). 

Sensitivity of modal quantities to finite parameter changes. Finite modifi­
cations take into account higher order terms in the corresponding expan­
sions; see, for instance, [34]. In this context it should be mentioned that 
recalculations with finite modifications can, of course, use the results of 
the eigenvibrations of the unmodified model in order to reduce the com­
putational expenditure. The matrix eigenvalue problem (2.1.38) for the 
unmodified system, and that of the modified system, 

(2.1.41) 

are taken as being solved with the transformation 

(2.1.42) 

By employing the congruence transformation with Do and taking into ac­
count the generalized orthogonal properties of the eigenvectors, and using 
the results of the unmodified model one obtains 

(2.1.43) 

If the modifications appear only at a few points, then I and Ao will dom­
inate in the above equation, so that an iteration starting with WMi == 
WOi, qMi == ei will often converge in a few steps. 

Selective sensitivity of forced response. First, the sensitivity of the forced 
response to parameter modifications will be discussed. Now consideration 
is given to the very closely related problem of choosing the force so that 
the response is sensitive to a very small set of parameters, and at the same 
time insensitive to the remaining parameters [35]. 
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The dynamic response in the image domain follows from Eq. (2.1.31) 
to 

U(s) = H(s)NP(s), (2.1.44) 

with the use of the transfer matrix (2.1.35). For the sake of simplicity it 
is assumed that all the components of the dynamic response are available 
(observable). The dynamic stiffness matrix (2.1.30), decomposed corre­
sponding to pre-given subsystems, is represented as in Eq. (2.1.37): 

S 

S(s) = L aSiSi· (2.1.45) 
i=1 

Equation (2.1.45) expresses the assumption that all three parameter ma­
trices are linear in the design parameters aSi. 

The output sensitivity to the i-th model parameter, aSi, is defined as: 

(aSi) = II a~~:) 112 (2.1.46) 

where 11.11 is the Euclidian norm for vectors. When (aSi) is large, the 
Laplace-transformed output is sensitive to variations of the model param­
eter aSi. 

Let 5' be a set of parameter indices. The condition for selective sensi­
tivity to the parameter indexed in 5' is: 

{ 0 if ifj5', 
(aSi) = not zero if i E 5'. (2.1.47) 

The construction of a selectively sensitive input vector is now based on 
the following equations. The partial derivative in Eq. (2.1.46) follows from 
Eq. (2.1.44) to 

au(s) = -HS-1HNP. 
aaSi 

So let us find a vector ¢ satisfying 

S¢ _ { 0 if i fj 5', 
- not zero if i E 5'. 

(2.1.48) 

(2.1.49) 

This is the first selectivity equation. Solutions of the above equation are 
independent of the design parameters. Solutions of (2.1.49) will often exist, 
even for small index sets 5', because the submodel matrices Si are very 
sparse. Having found a ¢, we choose the input Ps, as a solution of 

(2.1.50) 
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The input vector resulting from the latter two equations will satisfy the 
sensitivity requirement of Eq. (2.1.47). These relations are necessary and 
sufficient. The strong requirements (2.1.47) and (2.1.49) can be weakened 
by substituting the zero by a small positive number. 

Additional remarks. In addition to the modifications of the eigenquantities 
and dynamic variables, all the model properties should be considered, such 
as reciprocity (which can be lost during life time), linearity etc. in order to 
find out the effects and the extent of the parameter modifications. It must 
be mentioned here that the choice of a suitable quantity for the intended 
purpose is also important; for example velocity (impedance, mobility) or 
acceleration (apparent mass, inertance) instead of displacement will be 
appropriate if the higher frequency range is considered. 

Further knowledge can be obtained by going deeper into the proper­
ties of, for example, the sensitivity of eigenquantities with respect to wave 
length and mode order [26]. In [26] it is shown that the mode shape sen­
sitivity for. a beam approaches its maximum when the dimensionless fault 
size is greater than 1/2. Knowledge of excitation characteristics (shape, 
time-dependency, frequency content, modal decomposition, etc.) also leads 
to extended statements, as is also used in adaptive testing [28]. 

2.1.4 
Model Structure Modifications 

Evolving model structure modifications, for example due to system degra­
dation are decisive changes, because they can concern the choice of model 
classes. Model structure modifications are alterations of the dynamic stiff­
ness matrix in general, of the type of damping, of the model order, and 
of the properties of the parameter matrices, and can lead to changes from 
a linear to a non-linear structure. An example of the latter is the vis­
cously damped behaviour for relatively small displacement amplitudes to 
larger ones due to stiffness reduction, which implies frictional behaviour. 
Nonlinearities will be mentioned briefly in the following. 

Dynamic stiffness matrix. Modifications .as(s) of the dynamic stiffness ma­
trix S(s), Eq. (2.1.30), have already been discussed briefly in Sect. 2.1.3, in 
the paragraph on dynamic response sensitivity. If linearly independent 
dynamic responses [UI(s), ... ,Un(s)] =: S(s) are measured due to suit­
able forces [PI (s), ... , P n (s)] =: n (s) then, suppressing the argument s in 
Eq. (2.1.33), it results in 

and it follows that 

.as == -S .as S-I. 
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Non-linearized, it holds true that 

Therefore modifications of the dynamic stiffness matrix can be detected. 
As already'mentioned, significant modifications in 5(5) can serve as a 
symptom. 

Type of damping. Our knowledge of damping forces is smaller than that 
of the other forces in mechanics. It is difficult to model them theoretically. 
In general, the damping must be determined by tests, [5]. In consequence, 
the damping forces are often modelled by equivalent viscous or hysteretic 
damping forces. 

Damping ratio estimates are relatively erroneous, [5], compared with, 
for example, eigenfrequency estimates. When one looks at the damping 
estimation from the free response data of an SO OF model, e-St (A cos WD t + 
B sin WD t), it can be seen that through the In-operation and for models 
with small damping ratios, small (multiplicative) errors can substantially 
distort the damping coefficient. When dynamic response measurements are 
taken, a long measuring time is needed in order to achieve small standard 
deviations for damping ratio estimates. However, for various reasons the 
data are often not available for the time required. The inner damping of 
a continuum that is proportional to the strain velocity E compared with 
the external damping, e.g. the common viscous damping, is described for 
a bar, for instance in [9]. The differences in the modelled damping effects 
can be substantial. 

Consideration is given to the viscously damped system (1.3.1) in the 
time domain and the corresponding hysteretically damped system with 
the complex stiffness matrix (K + jD), the latter being restricted to har­
monic excitation. With the use of the ease-hypothesis that the generalized 
damping matrices (with respect to the eigenvectors of the associated un­
damped model) are diagonal matrices, the following abbreviations will be 
introduced: 

bgr := fto/Buor, BE = diag(bgr ), 

d gr := fto/Duor, DE = diag(dgr ). 

(2.1.51) 

(2.1.52) 

Each damping ratio is related to one DOF, r, (proportional damping) 

(2.1.53) 

dgr . 2 gr := -2 = 2Dr, Dr «1, r = 1(l)n. 
wOr 

(2.1.54) 

In a first approximation it is 2Dr=gr' 
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Let us now consider the particular proportional damping 

B = aM + f3K, (2.1.55) 

with real constants a and f3. In generalized coordinates, suppressing the 
index r, it follows that 

(2.1.56) 

Damping only proportional to K (a = 0, f3 =1= 0) will result in a damping 
ratio proportional to wo, 

1 kg 1 
DK = -f3-- = -wof3. 

2 womg 2 
(2.1.57) 

This type of damping increases with increasing eigenfrequency. bg only 
proportional to the inertia matrix M (a =1= 0, f3 = 0) results in 

1 a 
DM =--

2 Wo 
(2.1.58) 

which means a damping reduction with increasing Woo For structural damp­
ing we obtain: 

1 
DSK = "2 f3 , a = 0, 

independent of wo, and 

1 a 
DSM = -22' f3 = 0, 

Wo 

dependent on w02• 

As can be seen, the type of damping differs substantially. 

(2.1.59) 

(2.1.60) 

Number of DOF. Another model structure modification is the change of 
the number in DOF within a (frequency-) bandlimited model. An example 
is the modelling of a crack in a plate. The linear model for a plate with 
a crack leads to modified boundary conditions for the open crack, and 
these are handled by introducing additional nodes in the FE model, which 
means enlarging the orders of the related matrices, and therefore intro­
ducing additional DOF (modes). The result is demonstrated in Table 2.1 
and Fig. 2.7 [26]. 

The general formulation is as follows: the dynamic response of the 
non-modified system with n DOF is assumed to be modelled by 

(2.1.61) 
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Table 2.1. Natural frequencies [Hz] of the plate shown in Fig. 2.7 

PLATE CONDITION/DOF 

UNIFORM (NO FAULT) 
WITH CRACK 
CRACK + HOLE 

N 

a 

II 

49.8 95.8 
49.7 87.8 
49.7 87.8 

IlIa 

112.1 
112.1 

65 

IlIb 

115.7 
115.9 
115.9 

o 
a) 

IV 

163.2 
163.3 
163.4 

33 

Fig. 2.7. Eigenmodes of a plate with a hole and a crack. a) plate dimensions, b) additional 
mode IlIa (see Table 2.1) due to the crack, c) nodal line of mode IlIb (see Table 2.1) of the 
uncracked plate, d) nodal line of mode IlIb of the cracked plate 

With an additional DOF the equation of motion can be written in re­
ordered form in the following way, while suppressing the argument s, 

SI,n+1 

S2,n+1 

Sn,n+1 
Sn+I,I S n+I,2 .•. Sn+l,n Sn+l,n+1 

U(n+l)n 

U(n+l)n+1 

(2.1.62) 

o 
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b 

c 

Fig. 2.7. (continued) 
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with the same excitation as before. Briefly, (2.1.62) should be written with 
U(n+l) =: (U'~, Un+dT, where the prime denotes the membership to the 
model with n + 1 DOF, as 

[ Sn(s) Sn,n+l(S)] {U~(S) } _ { Pn(S)} ( 6) 
'Sn+l.n(S) Sn+l.n+l (s) U n+l (s) - 0 . 2.1. 3 

The second row of (2.1.63) leads to the response 

1 , 
U n+l (s) = - Sn+l,n(S)U n(s) 

Sn+l,n+l (s) 

which can be substituted into the first row of Eq. (2.1.63): 

Sn(s)U' n(s) - Sn,n+l (S)Sn+l,n(S) U' n(s) = Pn(s), 
Sn+l.n+l (s) 

(2.1.64) 

(2.1.65) 

The result is an equation for U' n(s) which can be expressed by the non­
modified result and a deviation, 

U' n(s) = Un(s) + IlUn(s) : (2.1.66) 

[Sn(S) - Sn,n+l (S)Sn+l,n(S) ]IlUn(s) = Sn.n+l (S)Sn+l.n(S) Un(s). 
Sn+l,n+l (s) Sn+l.n+l (s) 

(2.1.67) 

Dependent on rank considerations Eq. (2.1.67) can be solved. 
As can be seen, the coupling terms in Eq. (2.1.67) are very important, so 

that in the case of modal vibrations simple frequency criteria are generally 
insufficient for determining modification effects [36]. 

If n-1 DOF now have to be considered instead of n DOF, corresponding 
partitioning leads to the desired result: 

(2.1.68) 

Un- 1 = U'n-l + IlUn- 1, (2.1.69) 

it follows 

IlUn- 1 (s) = S;;-21 (s)Pn- 1 (s) (2.1.70) 

-[S () - Sn-l.n(s)Sn.n-l(S) ]-l[p () _ Sn-l.n(S) P ( )] 
n-l S S n-l S S (s) n S , 

~n ~n 

if the the matrix Sn-l (s) is regular. 
If more than ± 1 DOF has to be changed, a corresponding submodel 

formulation has to be performed, [36]. This formulation also clearly shows 
the influence of the coupling terms. The transformation into generalized 
coordinates means that the investigations are clearly arranged. 
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u(t) FRICTION 

t 

Fig. 2.8. Comparison of a viscous damping force with dry friction 

Nonlinearities. Model structure modification can occur for the finite de­
flections by a change from linear external damping to dry friction (non­
linear behaviour, e.g. fittings), as already mentioned. This can be detected 
by the envelope observation of the related free vibrations which change 
from an exponential function to a straight line, Fig. 2.8. If it is assumed 
that the unmodified system under consideration behaves linearly, then this 
assumption requires, for example, that the excitation level is small enough 
so that the resulting deflections are also sufficiently small. System modi­
fications, for example stiffness reduction, may now introduce non-linear 
behaviour by enlarged deflections. This non-linear behaviour must first be 
detected. This detection can be done directly by looking for non-linear 
characteristics, or indirectly, by looking for violated assumptions of the 
linear system [37] (for details see Sect. 2.2.3). The question arises whether 
the observed non-linearity also has to be modelled for the purpose under 
consideration. 

If one does not know the nonlinear behaviour of the system, and if it 
is contained non-negligibly in the measured response, and if one models 
and estimates the parameters of a structured linear model, then sometimes 
the estimates are not physically interpretable (e.g. negative mass). These 
unrealistic parameter estimates can serve for detection of nonlinearities 
[38]. 

2.2 
Symptoms 

In the previous section, modifications of the modal parameters and dy­
namic responses were investigated that are due to parameter and model 
structure modifications, the latter stemming from system modifications 
caused by failures. However, state modifications are not only the result of 
parameter and structure modifications, of course, and initial conditions 
for the free vibrations and the forcing are also essential. 
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2.2.1 
Introductory Remarks: Symptoms, Discriminants, Features 

Detection and diagnosis of failures are based on measurements, through 
the intermediary of models. Measurements should be reduced to a min­
imum number of measurants which are most sensitive and informative 
with respect to the expected system modification (~ monitoring). Di­
rectly or indirectly measurable quantities which are sensitive to failures 
are called symptoms. Additionally, symptoms should be sensitive to the 
damage evolution (related to 0), but should be insensitive to distortions. 
A discriminant is a symptom which is sensitive to a particular fault, and 
therefore discriminants allow us to distinguish between various faults. Fea­
tures are special arrangements of symptoms which enable us to distinguish 
between several faults (with respect to a class). Patterns are established by 
features in order to characterize different system conditions. If a symptom 
is related to a subsystem it will serve for the localization of a modification 
to the system. 

The sensitivity results of the previous section are used to find out symp­
toms, discriminants and features. The basic and simple quantity is the 
symptom, which should have the following properties: 
• directly (e.g. strain) or indirectly (e.g. stress as a model-based recon­

struction) measurable, 
• functional relationship to a damage measure, 
• high sensivitity to a fault/damage as a local property, but robust towards 

unknown disturbances as a global property (contradictory requirements 
which need optimization), 

• distinguishability of various terms in the model, which also includes 
fault separation7, 

• the absolute value is a non-decreasing function of time, unless the 
system is repaired etc., 

• permit trend estimation. 

2.2.2 
Symptoms of Linear Systems 

The following system-related characteristics can serve as symptoms: 
• constants (e.g. cross-section measures independent of the fast time co­

ordinate t, but they can be dependent on the life time, e.g. due to 
corrosion), 

• functionals (scalars like an eigenfrequency which, for example, can be 
expressed as a Rayleigh quotient), 

• vectors (discretized function or an assembly of scalar symptoms), 
• functions (like eigenfunctions), 
• field descriptions (multi-dimensional, for example the velocity field of 

a continuum) by direct or indirect (model-supported) measured quan­
tities. 

7 Sometimes called isolation of faults. 
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Examples of scalars are 
• maximum response maxt x(t), 
• input energy, 

• rms-value Xrms :=1 .J t J: x2(t)dt 1 for periodic signals, 

• average of the absolute signal x(t): Xav := t JOT 1 x(t) 1 dt, 
• form (shape) factor xrms/xav, 
• crest factor Xpeak/Xrms> 
• impulse factor Xpeak/Xav, 
• variance lT~ (total power, see [5]), 
• 4th root of Kurtosis {3, with {3:= t J.~oox4(t)dt/ (t J~oox2(t)dt)2, 
• Rice frequency Jr = xrms/(27TXrms), where x rms stands for the rms-value 

of the velocity signal (it is connected with the power spectral density 
and not with the probability density function (pdf) as variance etc.). 

A hinge mechanism will be considered as an example of a function 
leading to a symptom. The signal considered with the i-th rotation (kine­
matics) m~y be written as [24] 

<l>i(t,8) = co(t) + Vi(t, 8) + ni(t, 8), (i - 1)T < t ::::: iT, i = 1,2, ... , (2.2.1) 

with 

T the rotation period 
o life time (slow time coordinate), 
t time of dynamics (fast coordinate), 
co(t) nominal signal of the mechanism, 
vi(t,8) fault signal of the mechanism, 
ni(t,8) noise signal independent of the nominal and fault signals. 

Taking into account the periodicity of the motion one obtains the total 
symptom 

00 

<I>(t,8) = L <l>i(t, 8) * o(t - iT), (2.2.2) 
i=l 

where the symbol * denotes the convolution and o(t) is the Dirac function. 
The total corresponding quantities of (2.2.1) are designated by the same 
symbols, but without indices. The fault intensity of the mechanism may 
then be measured by the expectation of the fault signal, which can be 
chosen as a symptom 

F(O) = Edv(t, 8)}. 

The ratio (see Eq. (2.2.1) combined with (2.2.2)) 

SNR = F(8) Edv(t,8)} 
o Ed<l>(t, 8)} - F(8) Edc(t) + n(t, O)} 

then describes the fault signal dependent on 8 related to the remaining 
signals dependent on 8. The information content here is the fault signal 
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MEASURED 
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Fig. 2.9. Output residual 

MEASURED 
INPUT 

INPUT 
RESIDUAL 

OUTPUT OF THE 
INVERSE MODEL 

Fig. 2.10. Input residual 
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Fig. 2.11. Generalized residual 
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~. 

at the point of generation, and therefore it may be called a signal to noise 
ratio, because the remaining signals in the denominator play the role of 
distortions. Generally, the symptoms are measured at locations not iden­
tical to the locations of the fault generation. Then the spatial coordinate 
and the dynamic behaviour of the system must be included, the latter de­
scribed by impulse response functions in the time domain or by frequency 
response functions in the frequency domain. 

It should be mentioned that we distinguish between global and lo­
cal symptoms. Global symptoms are the norms of residuals to be gener­
ated (see Sect. 4.2.3), i.e. the output, input and generalized residuals (see 
Figs. 2.9 to 2.11), with respect to the dynamic responses. The components 
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INPUT RESIDUALS 
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EIGENVALUE 

PROBLEM 

Fig. 2.12. Classification of residuals 
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INVERSE 
MODELl M-1 

OUTPUT RESIDUALS 

PARTIAL 
RESIDUALS 

MODAL NON-MODAL 

of the residual vectors generated from dynamic responses are also global 
residuals, because they only implicitly contain the information of local pa­
rameter modifications. Additionally, we can introduce the equation error, 
which in the case of dynamic response problems is equal to the input 
(force) residual. In the case of the eigenvalue problem we can distinguish 
between the equation error (zero force residual) and partial residuals, such 
as the differences between eigenfrequencies of the damaged and undam­
aged system, or such as the eigenfrequency residuals and the corresponding 
differences between the eigenvectors, and in addition between the gener­
alized masses. The fulfilment of the generalized orthogonality properties 
etc. can also be taken into account. Fig. 2.12 gives an overview of possible 
residuals. The non-modal residuals are important in engineering, because 
the engineer is mostly interested in, for example, stress distributions and 
acoustic levels. One obtains local residuals, for example, by taking the el­
ementwise differences of the stiffness matrices at life times 8i and 8i+1• 

Flexibility and inertia matrixes can be taken instead of stiffness matrices. 
Here the reader is referred to Sects. 2.1.3 and 2.2.6, and Chap. 4. 

Of course, one can combine global with local residuals (see Chap. 4). 
One can also choose special indicators, like the MAC8 [39] etc. Local symp­
toms with their local information contents will serve simultaneously for 
fault detection and localization. The product of the residuals of the modal 
vector components are also a suitable symptom for fault detection [26]. 

Finally, in very general terms we can state the following: the measured 
signal is designated by x(r, t, 8). The operator to transform x(r, t, 8) into 
a symptom, briefly called the symptom operator, may be designated by 
'I'{x(r, t, 8)} (e.g. Kurtosis). If the symptom is a statistical variable, we 

8 Modal Assurance Criterion: it is the cosine of the angle between, for example, a measured 
and calculated eigenvector. 
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have to apply the expectation operator E. If the process is ergodic, we can 
substitute the expectation by time averaging with the probability one: 

liT E{'l'{s(r, t, O)}} = lim - 'l'{s(r, t, O)}dt. 
T->oo T 0 

(2.2.3) 

The discriminant of the k-th fault can then be described by the operator 
Ek: 

dk(r,O) := E{2d'l'{x(r, t, O)}}}, (2.2.4) 

or directly from the signal: 

dk(r,O) := E{2dx(r, t, O)}}. 

As an example of a discriminant let us consider a truss. The bars serve 
for the decomposition (2.1.37) of the stiffness matrix, the matrices Kj in 
(2.1:37) representing the undamaged bars. After some time stiffness reduc­
tion in a particular bar can be detected and located in the factors aKi if the 
stiffness matrix (2.1.37) is adjusted to the damaged state. The adjustment 
factors aKi can serve as discriminants in this case, where localization is 
identical with designating a fault in a particular bar. 

2.2.3 
Symptoms of Non-linear Systems 

Various types of non-linearities are shown in Fig. 2.13. Nonlinear behaviour 
can result from modifications of a linearly behaving system. The symp­
toms discussed in the previous section can also be applied for non-linear 
systems. However, non-linear effects differ fundamentally from linear be­
haviour. Linearized models cannot describe the non-linear behaviour. Con­
sequently, symptoms including nonlinear effects compared with the cor­
responding quantities of a linear model lead to deviations from the linear 
behaviour, so they can serve for detection: violated assumptions of linear­
ity. Therefore, as already stated, the detection of non-linear behaviour can 
be performed indirectly by tests, if one assumes a linear model and looks 
for violated assumptions. Here artificial harmonic excitation with different 
levels of response amplitudes is most effective. Characteristics which can 
be chosen are 
• superposition, 
• reciprocity, 
• parameter independency of sample (initial conditions, damping), 
• Nyquist plots (their geometry), 
• 
The distortions are sometimes informative (pattern recognition) when one 
looks, for example, at distorted Nyquist plots [40] (Fig. 2.14 ); here the 
isochrones (w = const.) for simple cases indicate the type of non-linearity. 
Non-linearities affect the dynamic response most in the resonance neigh­
bourhood [41,42]. 
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----,r-+---.~"'- D1SPLACEM ENT 
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Fig. 2.13. Types of nonlinearities 

HYSTERESIS WITH 
DETERIORATION 

Direct methods for detection are based on such symptoms as 
• signals due to special excitation and filtering [5], 
• indicator functions (e.g. SIG-function [43]), 
• Hilbert transforms [44] 
• high order correlation functions [45], 
• multispectral density functions [46], 
• dispersion functions [47], 
• histogram measures [48] (pattern classification), 
• NARMA, NARMAX models [45], [49] to [53], 
• polynomial fits [54], 
• 

Before going into details of the itemized methods, the following problems 
should be mentioned in this context: 
• It is hard to distinguish between the bias in the process model and in 

the noise model. 
• Does the detected non-linear behaviour require and also permit a non­

linear model? 
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Fig. 2.14. Recognizing nonlinearities from the patterns of isochrones 

• Detection in general does not include structure (of the model) identi­
fication. 

• The choice of inputs and outputs must reveal the structure patterns 
(complete set of information with respect to the initial conditions: suf­
ficiently large deflection amplitudes without system destruction). 

Note: Although, for example, an SDOF model with cubic stiffness and initial 
harmonic excitation will respond with sub-harmonics for free vibrations 
with particular initial conditions [55]. In self-excited vibrations of systems 
with dry friction a stable or unstable vibration can occur. 

We now come to the details of the direct methods itemized above. 
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The SIG-function [43] as a direct measure is defined by 

(2.2.5) 

where x(t) is the measured and xf(t) the filtered, linearized dynamic re­
sponse within a time interval [0, T]. 

The Hilbert transform is defined as follows. The one-sided Fourier trans­
form is defined by: 

with 

f(x) = { # ~ for x < 0 
for x> o. 

(2.2.6) 

(2.2.7) 

With the unit step function l(x) Eq. (2.2.7) can be rewritten in the form 

f(x) = l(x)f(x). 

Assuming f(x)€L 2(0, (0), the Fourier transform leads for f(x)l(x) to the 
Hilbert transform 

1 100 FIC'ry) F 2(y) = --vp --d1] =: ~{FI(Y)}, 
1T -00 Y - 1] 

(2.2.8) 

and to the inverse Hilbert transform 

FI (Y) = ~VP 100 F 2(1]) d1] =: ~-I{F2(Y)}; 
1T -00 y-1] 

(2.2.9) 

in addition, the Parceval theorem holds true, 

(2.2.10) 

The abbreviation VP stands for 

100 lY-E /00 VP ... = lim ( ... + ... ). 
-00 E-+OO -00 Y+E 

(2.2.11) 

The real functions FI(y), F2(y) are named conjugate functions. It is nec­
essary and sufficient for the existence of the Hilbert transform that the 
components of F(y) are conjugate functions. The Hilbert transform, for 
example, exists for causal linear functions. In consequence, for the unit 
impulse response function for a causal SDOF mor:1el get) it holds true that 

9'{g(t)} = F(jw) = FI (jw) + F2(jw), (2.2.12) 



www.manaraa.com

2.2. Symptoms 

and it follows 

9l[{F(jw)}] 
~[~{F(jw)}] 

= 9lF(jw) = F}(jw), } 
= ~F(jw) = F2 (jw). 

45 

(2.2.13) 

If these equations do not hold true it is concluded that the system be­
haviour is non-linear [56]. This statement is valid if unit response func­
tions for causal non-linear systems do not exist as proven in [44]. 

Equation (2.2.13) can be written as 

. 1 100 F(jw) H(y) = ~{F(Jw)} = --vp --dw 
7T -00 w - y 

(2.2.14) 

with 

H(y) = F(jw) Ijw=y, (2.2.15) 

if the system behaves linearly, otherwise the inequality holds. Fig. 2.15 from 
[57] shows the patterns (frequency response functions) of three types of 
non-linearities for two excitation levels. The differences between low and 
high levels are small. Figure 2.16 from [57] contains the Fourier and Hilbert 
transforms of various non-linear SDOF models. 

It is noted that new developments in the description (detection) of lin­
ear and non-linear behaviour apply wavelets9 and the Wigner distribution 
[46], [58], [59]. 

For a stationary signal with zero mean a high order correlation function 
is, for example 

(2.2.16) 

For an ergodic process the correlation function of order n is defined by 

(2.2.17) 

The high order correlation function gives a characterization of a nonlinear 
process which serves for model structure identification [4]. 

Bispectral power density functions Sw(w}, W2) are bi-dimensional Fou­
rier transforms of the corresponding higher order correlation functions 
[ 45]. 

Example: A non-linear process is given by y(t) = u2(t), u(t) stationary 
Gaussian and mean-free, E{ u(t)} = O. The cross-correlation function is 

<PYU(7) = I: I: yu p(y, u;7)dydu = I: u3 p(u, 7)du = o. 

9 The disadvantage of the Fourier transform is the lack of a localization property: local mod­
ification of a signal changes the transformed signal everywhere. The application of wavelets 
does not have this disadvantage. 
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This cross-correlation function gives no indication of the quadratic rela­
tionship. 

Therefore, more information is needed than is contained in the joint 
probability density function (pdf), and this is the conditional pdf. In order 
to overcome the lack of information on the usual correlation function (see 
the last example) the following dispersion function [47] is introduced: 

0 yu (tl, t2) = EU (t2) [{Ey(tll[y(tl) I U(t2)] - Ey(tll[y(td]}f.(2.2.18) 

t l , t2 are independent variables. The dispersion function is the conditional 
mean of the random signal y(td given U(t2). The auto-dispersion function 
of the signal u(td, U(t2) is: 

(2.2.19) 

Figure 2.17 shows some examples with the conditional pdfs and dispersion 
functions. 

Histograms are well-known as approximations of pdfs and require no 
further discussion. 
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Fig. 2.15. Real and imaginary parts of nonlinear functions at two excitation levels for an SDOF 
system 
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Fig. 2.16. Fourier and Hilbert transforms of various nonlinear SDOF systems, (a) Simulated 
data for a non-linear (hardening) cubic system; (b) experimental data; (c) Simulated nonlinear 
(single mode) Coulomb friction data and Hilbert transforms in real/imaginary, and Nyquist 
representation; (d) Experimental data corresponding Hilbert transform 
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Fig. 2.17. Some conditional pdfs 

Modelling of processes applying estimators is another, but expensive, 
method of detection. It is an advantage that the resulting mathematical 
model can be used for other purposes as well. The parametric model can 
be a differential equation or, when discretized, a difference equation: for 
non-linear models the latter is called a non-linear ARMAX model or briefly 
a NARMAX model. X stands for exogenous excitation. Further models are 
available, of course. If one restricts the class of models to polynomials, 
knowing that according to the Stone-Weierstrass theorem, polynomials 
approximate continuous single-valued functions in a finite interval uni­
formly, then their maximum power can be estimated simultaneously with 
the polynomial coefficients: structure identification [54], [60], [61]. 

2.2.4 
Features and Patterns, Classification 

Features. Symptoms assembled in a feature vector will serve as a basis for 
decision (Fig. 2.18). The features can belong to classes and form a pattern. 
A quality criterion (decision function) for decision is given, and this can 
be knowledge-based. The result will initiate several actions. 
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Fig. 2.18. Decision due to features 
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DECISION 

VECTOR 

The starting point is a scalar or a signal (time function). The first step 
to be done is 
• pre-processing: this can be done by amplification, filtering, lineariza­

tion, or rectification and envelope calculation etc. Another type is dig­
itizing, taking into account the sampling theorem (Shannon, [5]). It is 
possible that segmentation and digital filtering will be necessary (see 
Chap. 3). 

• The second step is feature abstraction: the aim is to condense the in­
formation contained in a signal to a few significant characteristic quan­
tities: the features (this is more than data reduction). A set of features 
will be assembled in a feature vector. 

The following are examples of features : 
• Eigenfrequency shifts tJ..jd fi, fi> the eigenfrequency of the test spec­

imen, i = 1, ... , of a cantilever due to mass and stiffness modifica­
tions. The eigenfrequencies of the unmodified system are denoted as 
fi unm.The residuals are ~Ji := Ji - fi unm' It is assumed that local de­
fects exist at the points Xk, k = l(l)K. The characteristics d Bk and dJLk 
are introduced for the defects of stiffnesses and masses, respectively, at 
point k: 

d _ {O no defect exists 
k - 1 defect exists. 

Each defect characterized by d Bk , dJLk is related to a frequency shift 
pattern ~hib ~fJLik for k = 1 (l)K. With these patterns a coefficient 
matrix can be established which can be used for computing d Bb dJLk as 
values between 0 and 1 [62] (see also [63]). 

• Additional eigenfrequencies, as shown in Table 2.1 from the plate with 
a crack. The nodal lines also form very sensitive patterns (see Fig. 2.7). 

• The participation coefficients of an expansion of a pattern {f} = f, a 
(n, I)-vector, with respect to an orthogonal basis {<Pp}, v = l(l)m, can 
be chosen as features : 

The inverse problem will approximate {f}: 

m 

{f}approx = [<P\, ... , <Pm]{cp} = I:Cp<pp· 
i=! 
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With m = n the completeness of the vector basis is given. 
• The Fourier coefficients of the Fourier series of a periodic signal can 

be chosen as features (interesting for rotating machines). 
• Fourier and Laplace transforms, their discretized forms as well as the 

cepstrum [5] of a signal can be taken as features. Spectral amplitudes 
for constant bandwith (e.g. octave) may also serve as features. 

• The construction of special quantities of a mathematical model for the 
extraction of features (e.g. model parameters) is most sophisticated. 

• The stress distribution which varies dependent on crack sizes can serve 
as a feature. 

Features must describe the modifications expected in a sufficiently sig­
nificant way, and they must be statistically independent. 

Patterns. What are patterns? The waveforms of time signals, as used in 
acoustics and seismic investigations are well-known patterns. In general, 
patterns consist of features which fulfil the following postulates: 

PI: The information is contained in a representative sample. 
P2: A (simple) pattern possesses features which are characteristic of 

their membership of a class. 
P3: The features of patterns of one class compose a nearly compact set 

(subdomain) within the feature domain. These subdomains of features of 
different classes are separate. 

The following are examples of patterns: a typical view of an areal of 
a city, a circuit diagram and, as already mentioned, the waveform of a 
signal, and the figure of a spectral function. 

Features and patterns serve for the distinguishability (isolation) of faults 
and are based on the model-supported investigations (see the catalogue of 
possible faults in Fig. 3.1). The selective sensitivity already mentioned is 
another tool for fault isolation. 

Classification. In consequence of P3 a classsification is now possible. Var­
ious sets of features with respect to different classes, each fulfilling P3, 
permit classification with a pre-chosen decision function (e.g. the Euclid­
ian distance). Fig. 2.19 shows this classification for the feature domain of 
two dimensions (m" m2)' Classification is done here using a straight line, 
and for more than two dimensions by a hyper-plane. 

@++/O'" +++ '.' + ... : + - FEATURE VECTORS OF CLASS 1 

• - FEATURE VECTORS OF CLASS 2 

~ - FEATURE VECTORS OF CLASS 3 

Fig. 2.19. Classification procedure for non-overlapping sets 
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• • 
• • . , 

• 

Fig. 2.20. Use of classes with tolerance domains 

In addition to this deterministic procedure of classification, statistical 
procedures can, of course, be applied if, for instance, variances are included 
as tolerances (Fig. 2.20). Complicated model-supported classification can 
also be taken: a class of models and a subset of parameters are chosen as 
features. In addition, a learning classification can be introduced, where the 
classification is not fixed and the decision function will be adjusted opti­
mally during application by, for example, external (e.g. time-dependent) 
information. 

2.2.5 
Remarks on the Decision Problem 

Decision theory plays an important role, and it is possible to apply deter­
ministically and statistically based procedures. If sufficient statistical data 
are not available, fuzzy logic can serve for decision-making. A real ap­
plication in detail is, of course, problem-orientated and object-orientated 
and based on symptoms, features and patterns; functionality (operational­
ability, serviceability) criteria, and safety assessment are mostly the basis 
for decisions (see Chap. 5). Holistic modelling combined·with a method of 
making condition assessment by applying fuzzy sets is proposed in [64]. 

The damage detection of systems can use residuals. The first decision 
to be made is whether the detected modification is significant. The quality 
criterion applied can be deterministic (threshold, limit values) or statisti­
cal (by samples: the test sample in comparison with the learning, initial 
[design] sample; by patterns with tolerance values). If the standard devia­
tion (]" x is used as a tolerance band within the statistical decision, then it is 
energy-based, because (]"~ is equal to the total integral over the power spec­
tral density for mean-free samples [5] (p.l05). The second decision will be 
model-based; it is a decision dependent on the modification assessment 
concerning further actions (see Fig. 1.2). In Chap. 5 the reader can find 
a more detailed illustration and discussion referring to the model-based 
diagnosis procedure. 
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2.2.6 
Remarks on the Localization Problem 

The localization of faults/damage in the system is equivalent to locating 
model modifications. The model representing the recent state can be mod­
ified due to faults/damage in comparison with the reference model (with 
respect to a previous state or to the unmodified model): this means a 
more or less qualitative determination, whereas the estimation of param­
eter value deviations is a quantitative approach. 

Detection of faults. Global detection can be performed (see Sects. 2.1.3 
and 2.2.2) using the Laplace transformed equation of motion (2.1.31) with 
respect to the life time 0= const. with zero initial conditions. The model 
describing the system at time 0i will be denoted by the index i, and with 
i - 1 the model describing the system at time 0i-I, i = 1, ... ; the index 0 
designates the initial state: 

Si(S)Ui(S) = NP(s), Si-I (S)Ui-I (s) = NP(s), (2.2.20) 

assuming that the external forces are unchanged during the system's life­
time. The modification of the dynamic stiffness matrix will then be ex­
pressed by 

(2.2.21) 

It follows 

(2.2.22) 

the known (by measurement) and Laplace-transformed dynamic response 
Ui(S) multiplied by the known previous dynamic stiffness matrix will result 
in an additional (residual) force 

(2.2.23) 

The external force NP(s) is assumed to be known. If IIAPi(s) II is greater 
than a pre-chosen threshold Ps > 0, then a significant modification is 
detected and further investigations are needed.This detection procedure is 
illustrated in Fig. 2.21; it is an input error method. If instead of APi(S) one 
is looking for AUi(S) := Ui(S) - Ui-I (s), it is the output error method. 

These procedures for detection use the dynamic stiffness matrix S(s) 
or the transfer matrix H(s), and input and output quantities: these are 
non-parametric models. In addition, adaptive excitation is suitable instead 
of that coming from the sytem's operation in order to enlarge a possible 
modification effect in APi(S) or in AUi(S). 

Sensitivity analysis has to be performed in order to determine symp­
toms of condition for the system under consideration. As shown in 
Sect. 2.1.3, modal quantities can be taken, and further symptoms are item­
ized in Sects. 2.2.2 and 2.2.3. 
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Fig. 2.21. Detection procedure based on a threshold Ps 
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SYSTEM 

Localization. Local residuals serve for detection as well as for localization, 
as has already been mentioned in Sect. 2.2.2 10• In order to reduce the com­
putational expenditure and the related numerical problems, one can intro-
duce global damage discriminants [26], [33] as factors aXiu, a~!, ag;, a~~ 
of the physical parameter matrices associated with subsystems of the total 
system considered: 

(2.2.24) 

(2.2.25) 
£=1 £=1 

(2.2.26) 

where the matrices M(i-I) K(i-I) G(i-I) B(i-I) designate the submodels for 
(]' 'L 'L 'P 

the previous (reference) state, 

M(i-I) .= ~s M(i-I) } 
. L...Ju=l l7 ' 

K(i-I) .= ~I K(i-I) G(i-I).= ~I G(i-l) 
• L.....L=l L' • L.a=l L ' 

B (i-I) .= ~R B(i-l) 
• ~p=1 p , 

(2.2.27) 

and again the dependency on i is related to the life time 8i . Deviations to 
be estimated of the a's from 1 (Eqs.(2.2.24) to (2.2.25) turn into Eq. (2.2.27) 
for the unmodified model) indicate modifications within the concerning 

10 Eigenfrequencies also have some local properties through their relationship to the modes 
which can be used (rank ordering [62), [63]) 
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subsystems. If the submodelling for modification location is insufficient or 
insufficiently sensitive, then a hierarchical halving of the submodels can be 
done [26] together with an appropriate stopping rule, depending on the 
accuracy required for localization. The problem of how to choose these 
submodels (see Sect. 4.3.1) is assisted by 
• prior knowledge of fault occurrence (experience), and 
• theoretical fault investigations (see Fig. 1.1) 
• sensitivity analysis. 

Many other residuals can also be used. However, no attempt has been 
made to achieve completeness, and especially the choice of the residuals 
is dependent on the system, the fault and the purpose. 

Problems. Consider the fact that the detection and localization are based 
on measurements which may be erroneous and incomplete, as already 
stated. The detection and localization results are therefore uncertain. If, 
for example, eigenquantities are chosen as symptoms corresponding to an 
N DOF model, with N < n, n the order of the prior model, the question 
arises of how to overcome this incompleteness for local detection by a 
comparison of the models, and if partial residuals are not taken. W.P. 
Rodden [65] proposes, as is also recommended in [66], a comparison 
of the spectral decomposition of the inverse inertia matrix and of the 
flexibility matrix of the measured eigenquantities with those of the prior 
mathematical model, taking only the corresponding N modal quantities. If 
one likes to work with regular matrices, then the missing eigenvectors can 
be substituted by arbitrarily linear independent vectors for comparison 
purposes only [67], or by order reduction [68]. 

The estimation of the a's by, for instance, the application of least 
squares, means handling inverse problems which, in general, are ill­
conditioned for spatially discrete models. In particular, when computing 
with measured data, the measurement irregularities will generally be ampli­
fied. With the application of suitable algorithms [69], for example, the QR­
method can avoid amplifying the inaccuracies. However, often no unique 
solution exists, so that regularization methods must be applied [70-72]. 
A very efficient procedure is the Bayesian approach, or if the confidence 
of the prior values cannot be estimated, the corresponding deterministic 
Tikhonov-Phillips method. The application of the pseudo-inverse com­
bined with penalty terms regularizes the problem, which means that it 
gives a unique solution with satisfactory accuracy. These problems are 
discussed in Chap. 4. 

Intensities. Stationary dynamic responses and eigenquantities contain 
some difficulties for the localization of modifications. Therefore, finally, 
structural intensities [73] should be mentioned which can lead to some 
new procedures in the future, although the methods have not been de­
veloped sufficiently yet. Only a simple example is therefore explained as 
a demonstration. Local energy transport by travelling waves can be de­
scribed by the energy flux, as is well-known in acoustics, and they can 
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Fig. 2.22. Example of acoustic intensities 

be measured by intensities which are vectorial quantities. They can also 
provide local information. Fig. 2.22 indicates an intensity distribution in 
a house due to a structure-borne vibration source. In consequence, inten­
sity measurements are able to detect and localize sources (excitation) and 
sinks (damping) dependent on structural properties. FE modelling is used 
for determining energy fluxes [73] and finite differences [74]. 

The one-dimensional wave equation [9] will be considered: 

m(x)Y(x, t) - [S(x)y'(x, t)]' = 0, (2.2.28) 

with the stiffness distribution Sex). The energy flux from Xl to X2 is ob­
tained from the differentiated (with respect to time t) total energy con­
tained in the interval [Xl, X2]: 

(2.2.29) 

where P(x, t) is the instantaneous energy flux, 

P(x, t) = -S(x)y'(x, t)y(x, t). (2.2.30) 

As is done in acoustics, P(x, t) I~~ can be determined approximately by 
approximation of the derivatives: 

Xl +X2 xo= ---
2 

(2.2.31) 

(2.2.32) 

(2.2.33) 
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and this produces P(xo, t), as given in (2.2.30). 
The average of the net energy flux in the positive x-direction (ascending 

wave) follows for the constant cross-section with Sex) = So to [75]: 

So 100 1 P(xo - ct) = - 0 Im[S12(w)]dw 
21TC -00 Szn2WT 

(2.2.34) 

where c2 = So/CpA) = E/ P for longitudinal vibrations (A is the cross­
section area, p the material density, E is the Young's modulus), f := 
(X2 - x])/c, w the variable frequency, and SuCw) the cross-power spectral 
density of the measured signals .r(x], t), Y(X2, t) with respect to T = 7/2. 

The advantage of one-dimensional wave propagation is the absence 
of dispersion. Dispersion makes the problems much more complicated 
for the bending of beams (Timoshenko model) and plates. For dispersive 
waves the superposition of the energy flux with respect to ascending and 
descending waves does not hold true, and therefore only approximations 
are available. 

2.3 
Damage Initiation and Evolution in Operating Systems 

2.3.1 
The Physics of Structural Wear and Damage 

The wear of mechanical systems is directly linked to their operation and 
occurs in many ways, but it is always closely related to the dynamic phe­
nomena, such as vibrations, acoustics including noise and ultrasound, and 
to the energy flow through the system, and dissipation inside the system. 

Taking into account the main type of wear, one should first consider the 
fatigue phenomena which, if they occur throughout the machinery or struc­
tural part, cause a loss of integrity. If fatigue occurs on the surface, it can 
cause the pitting and/or spalling of moving parts (i.e. bearings, gears etc.) 
or fretting (fatigue corrosion) in inmovable structural joints, especially in 
a corrosive atmosphere. The energy dissipated inside the system due to 
these types of wear can be calculated by the equations given below (some 
are of a qualitative nature due to a broad meaning of coefficients)[24, 76]. 

Volumetric fatigue, according to Morrow's hypothesis [77], provides 
the following way of calculating the dissipated energy: 

(2.3.1) 

where the brackets [0] designate the Gaussian brackets, k, b are material 
constants, and (7" a is the alternative stress amplitude, n is the number of 
load cycles, and f((J) is the instantaneous excitation frequency dependent 
on the life time (J of the component under consideration. 
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Surface fatigue energy can be calculated according to the Palmgren 
relationship [78] (Chap. 2) as energy dissipated due to pitting and spalling: 

(2.3.2) 

where CI is again a material coefficient, and P the unit pressure in the 
mechanisms. 

Corrosive fatigue - fretting, here the wearing energy is proportional to 
the volume Vo of the removed material [78, 79] (Chap. 12) 

[kO..JP - kiP A] 
Ed3 =C2VO=Cz f -k2A n, (2.3.3) 

where Cz is a proportionality constant, ko, kl' k2 are material constants, A 
is the vibration amplitude, and f the frequency. 

The second important type of wear is adhesive and/or abrasive wear 
which proceeds in every rotating or sliding structural joint. The intensity 
of this type of wear depends on the lubrication quality, the unit pressure, 
as well as on the relative vibration amplitude. The energy dissipated by 
frictional wear is proportional to the volume of the abrasively removed 
material, which is governed by Archard's law [79, 80] 

(2.3.4) 

where C3 is a proportionality constant, k3 a material constant, Re yields 
the stress of the material, and V is the sliding velocity amplitude. 

Another type of wear is erosion. It is caused by such phenomena as 
cavitation, corrosion, impact of fluid stream, ions, or other particles etc. 
With the exception of erosion by radiation, it is mechanical vibration that 
intensifies the erosion, and sometimes the vibration initiates erosion, as in 
the case of cavitation. The dissipated energy for cavitational wear may be 
assessed by [78] 

(2.3.5) 

Here again C5 is a proportionality constant, B a material constant, and 
bee) is the cavitational exponent. The same type of energy equation can 
be invented for other types of erosion, but with different interpretations 
of V as the velocity amplitude of the flow of a liquid, a jet, of particles, 
etc. 

The last type of wear in mechanical systems to be mentioned is creep, 
which is particularly important at higher temperatures and for complex 
mechanical loads: it is dependent on mean working stress and vibration 
with high frequencies. It may be stated here that the dissipated energy is 
proportional to the creep strain cCy ' being highly dependent on the stress 
0", the temperature T and the frequency f of ultrasound [81, 82] 

Ed6 = C6Ccy = C4 {~ + e(T, j)O"de} . (2.3.6) 
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Here C6 is a proportionality constant, e(T, f) the creep function, E the 
Young's modulus, and the exponent d dependent on the material and 
temperature. 

Having specified the main types of wear and associated dissipated en­
ergy, we can conclude that these energies are event-dependent, (n), as in 
fatigue processes, and life time-dependent (0) for the other forms of wear. 
Hence, the the following can be written generally 

{ An 
Ed = BO 

event type wear 
life time type wear. (2.3.7) 

In addition, it is advantageous to split the time-varying quantities into their 
mean values superimposed by the time-varying parts designated with the 
subscript a: 

0" = O"m + O"a 
P = Pm + Pa 
Vs=Vm+Va 

stress } 
unit pressure 
stream velocity. 

(2.3.8) 

The dynamic components defined above are a part of the internally dis­
sipated power Nd(O"a, pa, V m, ... ) associated with the system operation. 
Hence, each energy of wear Edi can also be expressed in a more general 
sense: 

Eai = Edi[O, n, Nd(O"a, Pa, Va,·· .), ki' Re,···, V m, Pm, O"m, T, ... J, 
i = 1, ... ,6. (2.3.9) 

The variables in the above equation (except 0, n, N d(.)) can be understood 
as attributes of the system behaviour dependent on the design quality Q, 
the manufacturing quality M, the use or load intensity L, the location of 
installation P, and the renewal quality R. The last relation may thus be 
rewritten as 

Ed; = EaJO, n, Nd, Q, M, L, P, R). (2.3.10) 

2.3.2 
The Energy Model of System Damage and its Measure 

Operating mechanical systems and their parts are open systems with re­
spect to energy flux and dissipation (see the previous section). We can 
therefore treat them as dissipative systems in terms of General System 
Theory [83, 84]. Moreover, after a sufficiently (finite) operating time every 
mechanical system ends in breakdown as the result of wear, i.e. energy dis­
sipation. From this simple observation it can be concluded that the energy 
dissipation capacity of each mechanical system is finite. This postulate 
is typical of an existing system. Hence let us designate those influence 
parameters enumerated in the previous section as components of the 10-
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gistic vector b..T := {Q, M, P, L, R}. One can thus write the limits of energy 
dissipation qualitatively as: 

(2.3.11) 

For the new system (or its parts) we therefore assume the dissipated en­
ergy equal to zero, and the limit or breakdown value of it as Edb(-). Edb 
depends at least on the quality or the level of its design, manufacturing, 
load sequence and intensity, and maintenance operations (if any). This 
energy concept of damage and its link to the dissipative system would 
appear to be innovative. 

Bearing in mind the variety of mechanical systems, their parts and their 
parametric dependencies on dissipated energy from .1., we need a special 
dimensionless measure of system damage evolution or wear development. 
Following the authors' last works [85] to [87], the dimensionless measure 
of the total damage development or evolution in a system can be defined 
as 

(2.3.12) 

with 

1 new system 1 = 0 ::::: D ::::: 1 = 1 at breakdown I· 

What the particular forms of the above measure for the different types of 
wear can be is of great interest. Taking into account discrete events and 
continuous forms of wear separately (see Eq. (2.3.7» we can find [24, 85] 

D= 

o 
0;; 
"'.~ L..J1 Obi 
.!!. 

!Jli....Ei. 
L t nbi 

for simple continuous wear 
for multilevel continuous wear (including creep) 
for simple cyclic wear 
for multilevel cyclic wear 

Li It + L j ~ for intermittent continuous and cyclic wear. 

(2.3.13) 

Any combination of the above forms of wear can also occur. It can be seen 
that the damage development measure is equivalent, for example, to the 
Odquist-Katchanov law of creep for the continuous type of wear, equivalent 
to the Palmgren-Miner fatigue law for cyclic wear, and to Archard's law 
of friction. Thus, the damage measures introduced above are simple to 
interpret, and they have a good experimental base. 

In terms of system behaviour, the damage evolution measure simply 
describes the technical condition in applications of mechanical and civil 
engineering. Such defined measures are hard to measure directly. They can 
sometimes be measured on samples under laboratory conditions. Hence, 
for technical application we need to use symptoms S (see Sects. 2.2.2 and 
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2.2.3) of the system condition which are measurable physical quantities 
covariable with the damage measure. This means the mapping S = ¢J(D), 
where ¢J(D) is the symptom operator. 

Introduction of the local (designated by r) damage measure 

D(r, e) := Ed(r, e, ~) 
Edb(r, ~) 

(2.3.14) 

results in the global damage measure through integration over the volume 
"11": 

D(e,~) = ~ Iv D(r, e, ~)dr. (2.3.15) 

2.3.3 
Damage and Symptom Evolution 

The system analysed here is considered as an energy transforming system 
designed for a pre-specified demand, as shown in Fig. 2.23. The input 
power N i , as the derivative of energy with respect to the life time e, is 
transformed into the usable power N u, and part is transformed into the 
dissipated power N d(e, V). Part of this dissipated power is stored internally 
as Ed(e, V), causing the damage to the system, and the remaining power 
Vee) is dissipated externally. In accordance with these assumptions, the 
dissipative power flow can be expressed as 

Na(e, V) = aEd~:' V) = Nd[e, Vee)] - Vee). (2.3.16) 

Additionally, the above powers depend on the logistic vector ~ reflecting 
the history of the system under consideration. It must be remembered 
that in practice only part of the externally dissipated power Vee) can be 
observed in terms of vibration, noise, temperature etc. Therefore, the goal 
is also to substitute the quantity Vee) by the measurable quantity, which 
is the symptom, by creating a model of damage evolution. 

Some constitutive equations must be assumed in order to create the 
energy processor model. These should be related to practice, of course. 
The first rule is: 
1. balancing the energy flow, that is Ni = N u + N d, 

2. the more the system is damaged, the greater is the externally dissipated 
power: 

dV(e) = f3dEd[e, Vee)], (2.3.17) 

with f3 a proportionality coefficient, constant in a first approach, 
3. the internally dissipated energy is finite and bounded by Edh, 

(2.3.18) 
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o 

o 

Fig. 2.23. Model of an operating system (open system) with limited dissipation capacity, 
destructive feedback and residual process observation 

4. the (internal) structure of the system is assumed to remain unchanged 
within its lifetime, and this is expressed by a part of the total dissipated 
power in the form 

aNdre, vee)] 
oV(O) 

const. > 0, "-+ Vee) = a-I Nd[e, Vee)]. (2.3.19) 
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The increment of the internally dissipated energy dEd(O, V), taking into 
account Eqs.(2.3.16), (2.3.18), and (2.3.19), will turn into 

dEd(O, V) = aEd~~ V) dV + aEd~~' V) dO = (a - I)[OdV(O) + V(O)dO]. 

(2.3.20) 

Insertion of this equation into the constitutional Eq. (2.3.17) leads to the 
differential equation for the externally dissipated power, 

dV(O) f3(a - 1)dO 

V(O) = 1 - f3(a -1)0' 
(2.3.21) 

It can be seen from Eq. (2.3.21) that with V ~ 00 it follows 

(2.3.22) 

With V ~ 00 the time Ob is called the breakdown time (lifetime) of the 
system, and it is also the measure of the operability of the system. 

The solution of the differential Eq. (2.3.21) is obtained with this nota­
tion, giving the internally and externally dissipated power, 

NdO (1- tfl = Ndo(l- D)-I, NdO:= Nd(O) 10=0 , } 

Vo (1 - t) -I = Vo(l - D)-I, Vo:= V(O) 10=0 . 

(2.3.23) 

With respect to the example (2.3.13) D, on one hand, is the dimensionless 
life time of the system, and on the other hand, it is the damage measure 
(2.3.12). Eqs.(2.3.23) show that the total dissipated power N d and the power 
of the residual process are colinear. Both will tend towards infinity if the life 
time 0 tends towards the breakdown time (lifetime) 0b. However, there will 
not be an infinite power because the input power is finite and the balance 
Ni = Nd + Nu must be kept. 

With these results the next step can be taken toward the symptom 
evolution model. As is known from practice, only a filtered part of the 
external dissipated power can be observed in terms of vibration, noise, 
temperature etc. This fact may be acknowledged by the symptom operator 
cp(.) dependent on V: 

S(O) = cp (V(O)) . 
So Vo 

(2.3.24) 

The symptom operator cp(.) can be found by theoretical studies with a 
mathematical model and by a proper diagnostic experiment, where 1-D =: 
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~D is the dimensionless residual life of the system under consideration. 
According to the definition of the damage measure (2.3.12) and its physical 
meaning (2.3.13), the residual life can be written as 

{
1-.ft. 

1- D == ~D = (J~ 
1--

Nb 

for continuous wear, 
for cyclic wear. 

(2.3.25) 

As discussed in [88, 86] this quantity may be also named the damage 
capacity of a system. The damage capacity of a new system is thus ~D = 
1, and just before the system's breakdown its damage capacity is totally 
exhausted and approaches zero. 

With this new interpretation of the argument of the symptom operator 
we will look once more for the Eq. (2.3.24) of the life symptom of the energy 
transforming system. If one identifies the type of symptom operator ¢(.) 
in a diagnostic experiment or assumes it by prior knowledge, the inverse 
operator ¢-l (.) can be calculated. As the result one again obtains the 
damage capacity 

(2.3.26) 

This seems to be a very important step forward, which means that when 
one knows the damage evolution of the system expressed by its symptom 
life curve 5(0) or SeD), its residual life or its damage capacity ~D can 
be recalculated. As a generalization, considering the evolution of energy 
transforming systems, one can say that the foundation of symptom-based 
diagnostics is proven analytically. 

From Eq. (2.3.26) it is seen how important the knowledge of the type 
of symptom operator ¢(.) is in symptom-based diagnosis. Starting from 
Eq. (2.3.24), in a first approach 5(0)/50 can be approximated by the first 
term of its power series as 

5(0) = ,A.. (V(O») ~ (V(O») ~ ,A.. .,., + ... , ')1(.,.,) > O. 
So Vo Vo 

(2.3.27) 

This approximation gives the symptom life curve of Pareto type, which is 
more easily recognizable when Eq. (2.3.23) is put into (2.3.27): 

(2.3.28) 

This equation is the symptom life curve with asymptotic behaviour at the 
breakdown time. The same symptom life curve expressed in terms of the 
damage measure reads 

(2.3.29) 

These curves are illustrated in Fig. 2.24. The asymptotic behaviour of the 
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Fig. 2.24. Symptom evolution of the system condition dependent on the life time and damage: 
the symptom life curve with two different shape factors 'Y 

symptom life curve can be noted at the breakdown time e = eb (D = 1). 
It can also be seen that not every symptom dependent on 'Y may be suf­
ficiently sensitive to reflect the technical condition of the system under 
investigation. For the Pareto symptom operator it can be stated in more 
detail that the smaller the value of'Y the more sensitive is the given symp­
tom. This is also illustrated in Fig. 2.24 when the temperature and vibration 
symptoms, measured for the same system in operation, are compared. 

It can easily be seen from Eq. (2.3.29) that the damage capacity can be 
written as a function of the Pareto symptom operator: 

(2.3.30) 

Hence, for the Paretian life symptom the system damage capacity can be 
calculated very easily and expressed graphically; in the log-log scale it is 
a straight line inclined by the power 'Y. This fact is shown in Fig. 2.25 to­
gether with the residual life or damage capacity tlDe determination when 
the symptom value Se has been observed or caculated. If there is a set of 
systems of the same type in operation, but of different life history, dur­
ing their operation one can then observe a bunch of symptom life curves: 
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S(e, ~/ - [1 _ e/eb(~)]lfy = [1 _ D(~)]lfy' ~ = ~(Q, M, L, P, R). 
(2.3.31) 

When one looks for this symptom-life curve dependent on several param­
eters, the logistic vector ~ is included, or even dependent on the process. 
For example, for the load history L it can be concluded that assessment 
of the conditions of mechanical systems should be supported by statistics 
applied to suitably chosen symptoms during routine diagnostic practice 
(monitoring). 

2.3.4 
Mechanical Properties of Operating Systems in the Holistic Approach 

If symptoms S evolve during the system's operation, how do the pri­
mary characteristics of mechanical systems, the mass, the stiffness, and 
the damping ratio behave? The essential characteristics of mechanical sys­
tems during their life-stages, expressed for an SDOF model, are the stiffness 
k, the inertia m, and the damping coefficient b (internal dissipation en­
ergy). The damage considered is cumulative, so it also contributes to the 
life time-dependent parameter modifications. Hence, following the dam-
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age measures proposed by Natke and Yao [33], the following equations 
describing the evolution of the model parameters [85]) can be obtained: 

(2.3.32) 

with exponents am, ak, ab ::: 0, and damage intensity coefficients: 0 :::: 
am :::: 1, 0:::: ak :::: 1, 0:::: ab :::: 1, which can be estimated by a suitable 
identification technique. D is the measure of cumulative damage according 
to Eq. (2.3.13), which in simple cases can be substituted by the dimension­
less life time or dimensionless number of events. 

Other models describing the system parameter changes during the life 
do exist [89j11. The model presented above is very convenient for adjust­
ing the type of modifications ai, and the intensity or wear participation 
factor ai. Now the question arises: can these characteristics serve as symp­
toms of the technical condition? According to the general definition of a 
symptom (2.3.24) and with the previous one, S = </J(D), the question can 
be answered positively. But these damage measures, when equated to the 
symptoms (2.3.32), can usually be measured only in laboratory conditions. 
However, various quantities can be measured indirectly as symptoms. It 
is easy to measure the deflection x due to a known force (static, dynamic; 
deterministic, random) [85]. It is shown in [85] that the static deflection 
as well as the dynamic response due to random white noise, taken as the 
symptom of damage, give the same result expressed in a dimensionless 
manner: 

(2.3.33) 

if one acknowledges only the degradation of the stiffness ak =j:. 0 in (2.3.32). 
If this is compared with the symptom-life curve (2.3.29), 'Yx = (ak)-l can 
be calculated for the deflection as the symptom. Sometimes it is easier to 
measure the eigenperiod of the vibration T(D). It can be shown that under 
the same assumptions of stiffness degradation the dimensionless symptom 
for the eigenperiod is 

ST(D) = (1 - a D)-~ 
ST(O) k, (2.3.34) 

and it provides a symptom exponent twice as great as for the deflection: 
'YT = (2ja k) > 'Yx = Ija k. But additionally to the easiness of measur­
ing an eigenperiod, this symptom has another important advantage [85]. 

11 The authors are aware of the overdetermined definition in (2.3.32). However, it allows a 
more flexible and more sensitive adjustment. It is the simplest approximation, for example 
of moexp(amD). 
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In [90] a measure of structural degradation for earthquake engineering 
investigations is introduced called softening. It is defined as 

._ _ ST(O) 
Ds .- 1 ST(D) . (2.3.35) 

It is calculated according to Eq. (2.3.34): 

(2.3.36) 

one obtains the measure of damage as defined in Eq. (2.3.12), and it follows 
simply that 

(2.3.37) 

This means that softening can be equated to the energy-based measure D 
of damage. In some cases the parameters ak and lXk can thus be identified 
by the measured fundamental eigenperiod as a symptom of the vibrating 
system. Additionally, the accumulative damage D can be assessed directly. 

As a generalization of this example and in accordance with the state­
ment made in Sect. 2.2, in the diagnosis of conditions it is very important 
to choose an appropriate symptom, i.e. a symptom with maximum sensi­
tivity with respect to the damage D and minimum sensitivity with respect 
to environmental noise. 

It will be helpful to illustrate this holistic approach to system dynam­
ics and its relation to diagnostics and system condition evolution. Very 
often, industrial systems act under severe environmental conditions like 
corrosion. Interactions of tall chimneys with wind, of platform legs with 
wind and water etc. are other examples. The latter two systems can be 
modelled by cantilevered beams with decreasing cross-sections due to cor­
rosion, and with a fatigue process due to wind loading. A holistic model of 
such a system was created, and the fundamental eigenperiod of vibration 
was chosen as a symptom [88]. The result of the simulation is shown in 
Fig. 2.26, which illustrates the symptoms and condition evolutions of a 
steel chimney and a steel platform leg. As is seen, the normalized eigenpe­
riod symptoms increase quite substantially up to ten times at the end of 
the system's life. The recalculation of the symptom dependent on life time 
to the damage capacity according to Eq. (2.3.26) is shown in Fig. 2.27. It 
is seen from the graph that the beginning is not a straight line, but the 
remaining part is straight (Paretian). Such a graph can be used for residual 
life assessment and for determining the limit value of life with respect to 
safety, as it is done there with AD[ = 0.1 as the limit (of safety) value. 

As a conclusion from this example, with the aid of a holistic mathe­
matical model of the system under consideration and simulations of the 
dynamic behaviour, the symptom-based diagnosis can already be used at 
the design stage in order to assess the evolution of the life time condi­
tion. The result can be the locating of structural weak points where design 
improvements are necessary, and if the system exists, it will give the trans-
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ducer locations for system monitoring. Additionally, such simulations can 
provide in a first assessment of the system breakdown time 0b. 

2.3.5 
Damage Capacity and Symptom Reliability of Operating Systems and their Di­
agnostic Use 

As is mentioned in Sect. 2.3.3, if a set of systems of the same type is oper­
ating, these systems are generally of different origin with different histories 
designated by the logistic vector ~(Q, M, L, P, R). Additionally, very often 
only a few statistical data are available. The appropriate symptom will be 
5(0, ~). N» 1 system~ of the same type are considered. Due to a lack of 
information ~ will be trel1 • ..::d as a random variable. Therefore 5 = 5(M 
is also a random variable. Proper statistics for the symptom 5 are now 
required in order to assess the condition of a unit from the sample. 

The best characteristic describing the operational properties of a set 
of units of the same type is the reliability. There are various definitions, 
and according to [91, 92] reliability is the characteristic of the ability of a 
component or a system to perform a specific function. For the purpose of 
performance assessment the life time-based reliability Ro(O) is used and 
defined as the probability that the system will operate in specific conditions 
at a life time 0 smaller than the breakdown time 0b. The latter is, of course, 
a random variable, 

Ro(O) = P(Ob - 0 > 0). (2.3.38) 

The relative residual life can be substituted by the damage measure in­
crement, which is called the damage capacity ~D here (see the previous 
section), 

~D := 110 := Ob - O. 
. Ob Ob 

(2.3.39) 

The system reliability then follows as the probability of the system's resid­
uallife equal to the probability of the system's damage capacity which is 
greater than zero: 

Ro(O) = P(~D > 0). (2.3.40) 

As shown above, the internally observed dissipated energy is the mea­
sure of damage evolution. Additionally, this is reflected by the symptom 
5(0, ~). Consequently, the system's reliability may be expressed by the 
symptom reliability based on the symptom life curve. 

Corresponding to the breakdown time, the breakdown value of the 
symptom is defined as 

(2.3.41) 

For reasons of safety, if the systems are in continuous use the limit value 
of GOOD condition 51 is introduced, calculated from known properties of 
the random variable 5b by applying the statistical decision theory [24, 93]. 
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In terms of the observed symptom S(O, ~) at time 0 the symptom relia­
bility is defined as follows: the symptom reliability R(S) is the probability 
that a unit classified as being in GOOD condition (S < Sf) will be in op­
eration; it is designated by the measured and required symptom value S 
[86]. Taking it initially as the conditional probability with Sf the symptom 
limit value, it follows 

(2.3.42) 

As clarification of this definition, it is assumed that a set of units is mea­
sured at a calendar time 00 , obtaining a set of symptom readings IS}, 
and that the restriction'l given in the argument of definition (2.3.42) have 
been fulfilled. But even a .:hort time later, at 00 + 00, the symptom will 
be changed to S + oS, with 00, oS > 0, and a few units may approach the 
symptom breakdown value: S + oS = Sb. In order to predict how many 
units may fail, and using the definition (2.3.42), the total probability can 
be written as a conditional probability with the fact S < Sb: 

PG(S + oS ::::: SblS < Sb) 

= PG(S + oS < SblS < Sb) + PGCS + oS = SblS < Sb) 

= PGG(S + oS) + PGP(S + oS). (2.3.43) 

Here PGG (.) and PGP(') are the probabilities that the unit will will not 
fail and will fail, respectively, with the corresponding symptom value. The 
probability of failure can be assessed further [86]: 

with 

Pa (S<Sb <S+8S) 
PcCS<Sb) 

PcCS)-Pa(S+8S) _ } 
R(S) 

A(S)oS - ... ~ A(S)OS, 
(2.3.44) 

(2.3.45) 

A(S) can physically interpreted as failure/fault intensity per unit symptom 
increment. The probability (2.3.44) is the assessment of failure probability 
hp(.) for a unit being in GOOD condition with S < Sf. 

Now the symptom reliability can be defined in more detail as below: 

(2.3.46) 

It should be added that this defined symptom reliability is the general­
ization of the life-based reliability (Eq. (2.3.38», and both expressions are 
equal only for Sf = Sb [86]. 
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Looking at the symptom reliability as calculated from the definition 
(2.3.46), we should remember that we know how the system deteriorates: 
it is in accordance with the theory described by Eq. (2.3.28). But with a set 
of systems in operation that have different histories, some individual pdfs 
PGD(D) of their damage measures will exist. The transformation of the 
probabilities can be performed with this relation. From probability theory 
the relationship between the pdf PG(S) and PGD(D) follows in accordance 
with [94], 

Id(D) I pdS) = PGD(D) as . (2.3.47) 

From (2.3.30) it follows that 

(So)Y ( S )-y 
D = 1 - S = 1 - So . (2.3.48) 

Therefore, 

dD = S-y-l =! (So)Y 
dS ')' s~y S S ,S :::: So, '}' > 0 (2.3.49) 

holds true. 
The pdf PGD(D) is assumed to be generally symptom-dependent: 

( S(D)) k 
PGD(D) = bk So ,k < '}' , (bk = 1 for k = 0). (2.3.50) 

bk is the normalization coefficient. 
Using (2.3.46), one finds that 

(JO roo (S )Y-k dx ')' (5 )Y-k 
R(S) = is PG(x)dx = is bk'}': -x- = bk '}' _ k; , 

'}' > k:::: O. (2.3.51) 

As can be seen, independent of the method of observation of our set 
of systems, i.e. the value of the exponent in Eq. (2.3.50), the reliability 
distribution is of the Pareto type. If for simplicity k = 0 and bk = 1 are 
set, 

(2.3.52) 

finally follows with the same exponent'}' as for the symptom life curve 
(see Eq. (2.3.28)). 

What does this mean physically? For the Paretian life symptom 
Eq. (2.3.27) always gives a Pareto distribution of the symptom S, inde­
pendent of the type of damage distribution (for any k in (2.3.50)) in a set 
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of units PGD(D). Consequently, this behaviour is typical of evolutionary 
(hierarchical) processes independent of the type of system [95, 96]. If we 
now compare the right-hand side of the Paretian reliability (2.3.52) with 
the symptom life curve (2.3.28), it can easily be found that the following 
relationship holds true: 

R(5) = (~) Y = 1 - D == LlD(5). (2.3.53) 

As is obvious, the symptom reliability is equal to the residual damage 
capacity, but now with a probabilistic meaning. This means that having 
determined the symptom reliability function from the diagnostic experi­
ment, we can interpret it as the statistical equivalence of the residual dam­
age capacity of a given unit in terms of the residual lifetime or residual 
number of cycles. Hence, the following relation of equivalence, following 
the equivalence of the damage measure (2.3.13), can be written and used: 

( 5)Y {LlD R(5) = ; = ~~/Ob 
nb 

residual damage capacity 
residual life (dimensionless) 
residual number of cycles (dimensionless). 

(2.3.54) 

The diagnostic use of the above very important relation can be explained 
better in Fig. 2.28, where the symptom reliability function is shown as 
a result of the observation of a system set for a given value of 5e• This 
allows us to determine the expected damage capacity LlD, or the equivalent 
residual lifetime LlO lOb, or cycles Llnelnb. A reliability graph of this kind 
is a straight line for the Pareto reliability and, if presented in double log­
scale, it is very simple. It can be of great prognostic value, for example for 
the monitored machinery set in operation. 

The theory of damage evolution, and the meaning elaborated here in 
detail for the Pareto life curve and distribution are also valid for other 
right-hand side skew long-tailed distributions, such as Weibull and Frechet 
in a first approximation [97]. It is worthwhile to add here that both relia­
bility approximations are complementary, i.e. if 5 has Weibull properties, 
then 5- 1 has Frechet properties. It is noted that the Pareto pdf is the 
first (asymptotic) approximation of the Frechet pdf. There is one more 
argument for using the Weibull distribution, since it can be applied in 
an advanced model of proportional hazards [98]. One can show that, de­
pendent on the chosen symptom 5 = 4>(v), (see Eq. (2.3.24)), the results 
shown in Table 2.2 below can be obtained. 

Hence, following the results of Table 2.2, for application one can choose 
different symptom-life curves and symptom reliabilities, dependent on the 
observed tendency in a set of operating systems (OS). It may be useful here 
to recommend the use of the Frechet description of the observed system 
life properties. The Pareto distribution is the asymptotic approximation of 
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Fig. 2.28. Example of the prognostic use of the symptom reliability and/or damage capacity 
R(S) for a set of systems as the equivalence of the residual lifetime 

Table 2.2. Various symptom operators, life curves and symptom reliabilities for the diagnosis 
of systems in operation 

Symptom operator Symptom life curve Symptom reliability, Remarks, 
or Damage capacity Symptom model 

V> Yo, 1'>0 So> 0, ~= R(S) = 
<1>( fo) ::::: So 

(In :0) lfy [-In(1- D)pfy exp[ _(.i. V] 
So Weibull, S ::: So 

[-In(l-1?-)]-lfy [-lnD]-lfy 1 - exp[ _(.i. )-1'] Frechet, S ::: So 
So 

(reciprocity of 
Weibull type symptom) 

( .Y.. ) lfy 
Vo 

(1- D)-lfy (.i. )-1' 
So Pareto, S ::: So 

(asymptotics 
of Frechet) 

1+(1-1?-)'~ 1 + ID 
I' l+(l-fo)·y Uniform, S ::: So 

S ~ So 
(approximation of 
Pareto and exp(.)) 

exp(~(1- ~) exp(~D) l-yln.i. 
So Exponential, S ::: So 

Fn!chet, and the Frechet symptom life curve has much greater dynamics 
and sensitivity. The Weibull distribution and corresponding life curve can 



www.manaraa.com

74 2. Review of Tools and Concepts of Diagnosis 

be seen as complementary, because it can be shown that if S obeys a 
Frt!chet distribution, then S-1 is Weibull distributed and vice versa. Having 
assessed (from the data base) the type of symptom reliability and its shape 
coefficient y, diagnosis can be performed, i.e. the assessment of the present 
and the future condition of the system under question. This can be done 
independently, either in the symptom domain S or in the residual life 
domain tlD. 

In order to assess the machine condition in the symptom domain, we 
require some symptom limit values SI> as already introduced, or standard 
values for comparison. In the damage measure domain the residual or 
remaining life will be assessed, as was already shown by the relationship 
(2.3.54). But in order to determine the symptom limit value SI, or the 
alarm value Sa, the statistical decision theory [99] has to be applied: the 
Neyman-Pearson rule of risk assessment. If the availability of the machines 
is known (or the machine group), 0 < G :::::: 112, and if the allowable risk 
is specified, 0 < A « 1, expressed by the false condition assessment, the 
limit values (breakdown and alarm) can be calculated as follows (see Sect. 
5.I): 

= A } 
= cA. (2.3.55) 

As can be seen, the symptom reliability R(S) is used here again, and 
only the allowable probability of unneeded repair A (false decision) should 
be specified, as well as the value of the coefficient c. Usually, dependent 
on the age and the maintainance quality of machines, A is chosen between 
0.02 and 0.1, which corresponds to 2%-;.-10%, and for the alarm coefficient 
c values between 2 and 4. This means that unnecessary repairing of (2 -;.-
10)% of our machinery stock is taken into account in order to avoid the 
breakdown condition. This rule of symptom limit value calculation gives 
good results in the vibration condition monitoring of machines [24]. 

The residual life assessment will start with the relationship (2.3.54). 
Having measured the life symptom value Se for the machine under con­
sideration, one can write 

(2.3.56) 

On the other hand (and from the above considerations), we can also set 
the safety limit of the remaining life, because it is shown that 

A 
R(SI) = G == tlDI -limit remaining life. (2.3.57) 

12 For non-repairable systems it is G = 1. 
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Now the basic relations for the condition assessment of the system can be 
written 

GOOD condition: 

If Se :s SI 

or I:1De > I:1DI, 

FAULTY condition: 
(2.3.58) 

If Se ~ SI 

or I:1De :s ADI· 

This is the method of condition assessment, and in the case of the periodic 
monitoring of operating systems with the incremental life step dO, even a 
probabilistic approximation of the breakdown time can be calculated, 

(2.3.59) 

and the residual number of observations, 

I:1N = neRe 
b 1 - Re' 

(2.3.60) 

where Re = R(Se) and ne is the successive number of given observations 
with the value Se, when counting has started with units as new, i.e. for 
0= 0, n = O. 

Knowing this, we can even predict the next symptom value after the life 
time increment dO. This assessment of the remaining life, and a prediction 
of the corresponding symptom Sp can be performed. With Dp = De + 8Dp 
it follows: 

(2.3.61) 

where 8Dp = (pdO)/(NbdO) is the dimensionless prediction step related 
to the number p of observations, if the condition monitoring is periodic. 

For the symptom models of the Weibull or Frechet type the symptom 
value can be predicted using the equation 

(2.3.62) 

The theory presented in brief here has great inference power and can 
be generalized far beyond the domain of the systems considered here [96]. 
It has been generalized lately into the theory of energy transforming sys­
tems (ETS), [100, 101], where new fractal-like abilities and behaviour have 
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been revealed. This gives a physically based method for the reliability and 
diagnostic modelling of as shown briefly below. 

It will be noted that for non-repairable systems in civil and mechanical 
engineering the evaluation of system performance can also be carried out 
reliably by application of the crossing theory. The excellent book by T.T. 
Soong and M. Grigoriu [102] must be mentioned here. 

2.3.6 
Application of the Damage Evolution Theory 

Operating systems are mostly of complex design, function, energy flow, 
etc. As is postulated in the general system theory (GST), this complex­
ity is a fundamental reality of most systems [103]. From this point of 
view as consist of many subsystems (assemblies, subassemblies, compo­
nents) with their specific energy fluxes and dissipations. Hence the ques­
tion arises: should every subsystem be treated as an energy transforming 
systems (ETS)? Considering this more deeply, one will come to the con­
clusion that every subsystem of an as with a real or virtual boundary 
can be treated as ETS. Moreover, subsystems must sometimes be treated 
as ETS because their failure probability is high, substantially lowering the 
mission completion for the as. Consequently, from the point of view of 
the energy flux, as must be treated as an ensemble of ETS units organized 
hierarchically according to their design goal, specifications, and functional 
properties [101]. One should know that each ETS module has its own inter­
nallife 8(i), and the breakdown time 8b(i)' For this reason, all the dynamic 
processes of energy transformation proceed multidimensionally. Fig. 2.29 
is an attempt to explain this complex situation of the interdependency 
of subsystem lives and energy fluxes in the as (more can be found in 
[101]). When one looks at this figure, several important conclusions can 
be noted. First, the self-similarity of energy transforming processes at each 
level of the hierarchy of the as is seen. In other words, the self-similarity, 
or fractal-like energy transformation processes at every level of as energy 
flux decomposition [96], can be observed. Secondly, at each level of the hi­
erarchical ETS model one can establish an energy balance equation, which 
will take into account all the energy fluxes down from the given level of 
hierarchy. Thirdly, all the ETS outputs of a given hierarchical level con­
tain all the required information (for example, damage evolution) from 
the lower levels of hierarchy. But the greater the distance the levels have, 
the harder the deciphering of their contents becomes. 

Two cases from mechanical engineering and from civil engineering will 
be mentioned here as examples of the application of the ETS concept. 
Following this theory, several computer programs have been prepared to 
transform the symptom data base and to look for the most appropriate 
symptom reliability distribution, for example Weibull, Frechet, etc.[104], 
and polynomial approximation, [105]. The program calculates some mea­
sure of goodness of fit, such as the coefficient of Rand X2, the exponent 
'Y of given distribution, the symptom limit value 51 , the residual life ilDe, 

and the residual observation number before the breakdown ilN b, (see 



www.manaraa.com

2.3. Damage Initiation and Evolution in Operating Systems 

SUBSYSTEM 11 
(LEVEL 2) 

/ 
SUBSYSTEM 2 

(LEVEL 1) INTERNAL TIME 
LIFE·0° 

/ 

SYSTEM 
(LEVEL 0) 

77 

Fig. 2.29. Operating system as the hierarchical structure of ETS modules and the resulting 
interdependence of internal times immersed in the time flow of the meta-system 

Eq. (2.3.60) and neighbouring ones). The series of these programs are 
programmed in 'MATLAB'. 

As the reader remembers, the ETS theory permits one to understand 
the system damage capacity .6..D(S) in a deterministic and probabilistic 
way. The damage capacity can be understood deterministically for a given 
system which can be observed from its birth to its death. However, when 
observing a group of operating systems, the statistical concept of system 
reliability should be applied. Thus the computer results from the above­
mentioned MATLAB programs can have a deterministic or probabilistic 
meaning. 

Considering the deterministic meaning of .6..D(S) and taking respective 
symptom models (Weibull etc.), the life of the system in operation can be 
analyzed, for example, with the holistic model. It shows the modifications 
of the system properties and the operational characteristics during the 
damage accumulation caused by operational forces. Such an example is 
discussed in [88], where the life of a steel chimney under corrosion and 
fatigue caused by wind is investigated. Several symptoms are considered 
by simulation, the fundamental eigenperiod has been found as the best 
result for damage observation. ST(D) in Fig. 2.30 shows the application 
of the mentioned MATLAB programs for diagnosis of the residual life or 
damage capacity. From the figure one can see the simulated life of the 
chimney up to the symptom readings number 37, and the forecast of the 
symptom value for p = 3 steps. It can be seen that the residual life of 
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Fig. 2.30. Condition forecasting of the steel industrial chimney under the corrosion action by 
the computer program based on the ETS theory 

the system is exhausted because the two different models of the symptom 
used for prediction give similar results (resid. obs. nos. 1.02 and 0.77). 

If we look for the application of the ETS theory in the probabilistic 
case, when a group of operating units will be observed, Fig. 2.31 can now 
be interpreted. Here a group of M = 15 diesel engines were observed 
in terms of rms-amplitudes of acceleration each 10,000 km of service. 
These symptom readings are taken as the data base. The symptom relia­
bility models were found with the best fit. Here it is seen that the Frechet 
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Fig. 2.31. An example of diesel engine diagnosis by the computer program cem8.m based on 
ETS theory 

symptom distribution is most appropriate, and this is also true for the 
polynomial approximation. The upper left figure shows the observed be­
haviour of the engine number 'sil54dl' measured at point dl with the 
symptom rms-vibration acceleration of the casing. The upper right figure 
gives us the forecast of the engine behaviour at the forecasting horizon 
p = 3 for the polynomial approximation, and the lower left the same fore­
cast for the Frechet distribution. The abbreviated message of the program 
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concerning the symptom limit values, forecast symptom values, and the 
residual time and observation number are also shown for both the poly­
nomial and Frechet forecasts. It can be stated that the polynomial forecast 
is pessimistic here. In reality this was true, because the engine broke down 
shortly afterwards. More examples of accurate forecasting of the life of 
diesel engines are given in [97]. 

2.4 
Summary 

In this Chapter the classical methods of diagnosis are reviewed, and the 
mathematical and physical foundations are presented. The descriptions 
of damage/faults are discussed in relative detail. They are traced back 
to parameter modifications of the related mathematical model. However, 
model structure modifications with respect to changes of the number of 
DOF and the introduction of nonlinearities are discussed additionally. 

Symptoms as sensitive quantities playa large role in the detection of 
faults, in decision-making and in the localization of faults. Known quan­
tities are enumerated and discussed. In addition, emphasis is placed on 
subsystem modelling as an economic procedure for fault detection, local­
ization and quantification as preparation for the state condition adjustment 
described in Chap. 4. 

The last section contains a discussion of damage initiation and damage 
evolution models based on physical phenomena taking place during sys­
tem operation. The main statement of this section is the introduction of 
various damage measures, and of the damage capacity and the symptom 
reliability. It is shown that an analytic relationship exists. The diagnos­
tic use of the models is discussed. The energetic background is essential 
in damage investigations. Operating systems (including systems in service) 
require physically based holistic consideration which leads to energy trans­
formations. The result is the energy transforming system theory used for 
system life prediction. 
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CHAPTER 3 

Fault-Related Processes: Monitoring, Measurements, 
Processing of Signals 

The process of a faulty system must be observed in order 
• to detect the fault just in time, when re-adjustment or repair with min­

imum costs is possible, 
• to perform the system measurements for model adjustment of the cur­

rent state for fault detection, localization, finding the type, extent, evo­
lution etc., 

• to assess the fault as a basis for decision-making on further actions 
(operational, repairing, etc.). 

The equation of motion (1.3.1) written for the faulty process in the state 
space domain at the life instant f) and at time t, suppressing the f)-notation, 
has the form 

x(t) = Ax(t) + Bf(t) + Fp(t) + net) (3.0.1) 

with the measuring (or output) equation 

yet) = Hx(t) + Df(t) + q(t) + met), (3.0.2) 

where 
x(t) is the state vector, dots indicate differentiation with re-

spect to time 
A is the system (or state) matrix, quadratic of order n 
B is the input (or distribution) matrix; it is an (n,m)-matrix 
f(t) is the vector of external excitation with m components 
F is the fault entry matrix 
pet) with its components represents external disturbances and 

input sensor faults 
net), met) describe noise. 

All the matrices and vectors are of proper dimensions so that they are 
composable. 
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H is the measurement (or output) matrix 
D is the input-output matrix, which for our systems is generally 

0, except for improper transfer functions, where for the SDOF 
model the zero polynomial is of the same order as the charac­
teristic polynomial (see [106]) 

q(t) describes the output sensor faults 
yet) is consequently the measured dynamic response with generally 

fewer components than x(t). 

Equation (3.0.1) represents an adjusted model (to the life time considered), 
and therefore it is a verified and validated model, which means in other 
words that it is a trained model which already has experienced the learning 
phase. The system faults are included in the system matrix A. The system 
fault evolution between the time 0i and the time Oi-l can be described by 

(3.0.3) 

if the subscripts denote the corresponding life times. The comparison of 
suitable quantities (including reduction of noise) of the O-dependent mod­
els then results in a trend description. 

What can be stated with respect to Eqs.(3.0.1) and (3.0.2) is: 
• high sensitivity with respect to faults as a local property, and robust­

ness to unknown disturbances as a global property, are contradictory 
requirements which must be optimized 

• the distinguishability of the various terms is important, and this also 
includes fault and error separation 

• dynamic models as energy-equivalent models describe global system 
properties, while static models with many degrees of freedom enable 
us to represent local properties as, for example, stress maximal. 

pet) must first be excluded. External disturbances which excite the system 
can be assumed to be superimposed in f(t) if they are known (measured), 
otherwise they should be modelled and identified or assumed as random 
and incorporated in net). Input sensor faults will be excluded by a sensor 
check (possibly by calibration) before the measurement or by request be­
tween monitoring steps. The same method should be applied to exclude 
output sensor faults. The remaining noise has to be minimized. 

The reader is reminded that the state space description (3.0.1) as a first 
order ODE can be advantageous. However, when writing the state matrix 
A one should not forget that its structure dependent on the matrices M, C, 
and K is known [5] for the state vector x(t) = (U(t)T, U(tl)T as: 

(3.004) 

I Therefore it is doubtful whether simultaneous fault detection and localization with the use 
of one model is optimum. 
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Monitoring is essential in the assessment of system condition evolution. 
Weak point analysis enables us to find locations and quantities which can 
serve as symptoms. For example, in rotating machinery, bearings or shaft­
undercuts can be the weak points, so that one may consider these parts for 
the locations of transducers for observation. If the values of the measured 
symptoms exceed a pre-defined alert threshold, then the monitoring of 
symptoms as a result of the studies of possible faults can be performed, 
as described in Fig. 3.1. The following three decisions are needed in the 
process of system monitoring and assessment: 
1. When comparing the inspection results with those coming from weak 

point analysis using the current mathematical models, we need to define 
the alert threshold and to dedect a possible exceedance. 

2. From a detailed study of the system we need to decide whether the 
current mathematical model should be modified so that it will fit the 
current state (significance of modifications). 

3. When comparing results of diagnosis/assessment with those of predic­
tion/simulation using the modified models, we need to decide whether 
any corrective actions should be taken. 

These decisions are mainly based on measured data. 
Monitoring and diagnosis have to distinguish between 

• noise and modifications of the system, 
• the properties of various elements and/or subsystems, 
• the performance of the units in different life times, 
• the parameters of the model, and 
• the possibly varying influence factors affecting the process observed. 

The performance and the parameter monitoring are model-based, and 
are sometimes very sophisticated through thermodynamic modelling, as 
in the case of a jet engine [107]. Other types of condition monitoring 
(diagnostics) use either readings of tolerance units (fits) or of symptoms, 
or try to build some models later on. 

3.1.1 
The Goal of Condition Monitoring 

The reader is reminded of what the diagnosis of the system is: it is the 
determination of the present and future technical condition together with 
the cause finding of observed significant symptom/state modifications and 
sometimes their assessment. Monitoring is the observation of generally a 
few particular quantities of the system in operation. The objectives are 
to determine substantial system modifications with the help of symptoms 
or state vector components before significant operational consequences 
(product quality, safety decrease etc.) appear. In addition, these mea­
surements serve for model adjustment in order to perform the life time­
dependent verified and validated mathematical model. This can be done 
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Fig. 3.1. Flow-chart of diagnosis including monitoring 

in a two-stage process, as already mentioned: observing a few quantities 
within an alert system and switching to the real measurement of further 
quantities: monitoring on demand. Monitoring, of course, can be done 
periodically, where the required period is found computationally or by 
experience. The direct monitoring dependent on the task, and dependent 
on how critical the system behaves, will generally be done permanently. 

Observability in the above sense is required. If the fault one is inter­
ested in can be expressed by a significant change in a particular modal 
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quantity or in a set of them (including dynamic responses decomposed 
in eigenvectors), then observability can be investigated by, for example, 
the Hautus criterion, the Kalman criterion [108], or by the Grammians 
[106]. In their spectral decompositions the state space Eq. (3.0.1) with the 
structure shown in Eq. (3.0.4) and the measuring Eq. (3.0.2) without fault 
and noise terms give the equations 

A= ~A~-I, (3.1.1) 

B = ~~-I [ ~ ] , (3.1.2) 
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with N designating the locations of the non-zero forces, and with the modal 
matrix 

(3.1.3) 

corresponding to the state vector x(t) = (uT (t), tiT (t))T. If the eigenvalues 
assembled in the diagonal matrix A are complex, then n conjugate complex 
values exist, which lead to the modal matrix 

Q = [Qo, <10] , (3.1.4) 

designating with () the conjugate complex of (.). The frequency response 
matrix with initial conditions equal to zero follows as 

F(jw) 

(3.1.5) 

If only the displacements are measured, 

H = [Ho, 0], (3.1.6) 

then it follows that 

(3.1.7) 

Complete observability is given if there is no vector qi, i = 1, ... , n, with 
Hoqi = O. Correspondingly, the system (expressed by the model) is com­
pletely controllable if there is no qi, i = 1, ... , n, with qfN = O. The 
correctness of these statements can be seen directly. Consequently, the 
observability of faults can be investigated with the above observability cri­
terion. 

3.1.2 
Symptoms, Processes and their Characteristics 

One problem to be solved is which quantity can serve as a symptom (see 
Sect. 2.2). Various chosen symptoms can have the same result, because 
neither the model is unique nor, consequently, symptoms for the diagnostic 
model. This dilemma can be solved by taking into consideration the OS 
with respect to energy flux and the hierarchy of ETS. The experience of 
the analyst can be supported by considering the density of energy flux in 
the OS. This is because the greater the energy density flux, the greater is 
the dissipation, i.e. damage at a given location. And at these locations, 
or adjacent, we should choose the discretization points for the dynamic 
model equal to measurement points using the prior knowledge from system 
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analysis and from the past adjusted mathematical models. Additionally, 
theoretical analysis of weak points, of sensitivities, and of possible faults 
are decisive within these investigations. 

The process is defined as the set of input and output quantities. Each 
system in operation, dependent on its design task, may have three principal 
inputs: feeding with energy and material, control changing the operational 
menu, and it is subjected to different environmental interactions. Some­
times for testing purposes we also need an artificial excitation instead 
of the operational forces in order to perform the measurements needed. 
When looking for outputs of OS we have only two outputs, the upgraded 
and dissipated energies, as was already shown in Fig. 2.23. This figure 
may also serve as the input/output illustration scheme for other OS-like 
structures, vehicles etc. when material feeding is excluded. The observation 
requirements and possibilities are now briefly outlined for the diagnostics 
of different types of OS. 

Machines. In the case of a machine it is characteristic to have the feeding 
inputs, i.e. the energy input in terms of mechanical, electrical, chemi­
cal forms, and the material input for further processing into goods. Of 
course, the input for changing the production menu has to be controlled, 
and there is also the input of environmental disturbances. For the purpose 
of diagnosis a quantity is needed which has some relation to the damage 
intensity and location, or to the causes of it. This may be the process re­
flecting the current demand on the energy (or fuel) supply, as the energy 
efficiency depends on machine degradation advancement. For precision 
machinery and equipment which is sensitive to environmental vibrations, 
some quantities depicting the environmental forces or kinematic interac­
tions should be observed. It may sometimes be necessary to observe these 
inputs by means of suitable time, frequency, and amplitude characteristics 
in order to correlate them afterwards with the symptom of condition, or 
other system damage characteristics. As far as the outputs of a machine are 
concerned, there are several possible methods of observation. Initially, the 
output of products is usually monitored by special transducers for control 
and quality assessment purposes. These processes are often used for di­
agnostic purposes, as deviation from optimal working process parameters 
and characteristics is directly connected with damage evolution (for more 
see, for example, Chap. 10 in [22], and also [109]). The dissipated energy 
output from the machine has a great diversity of physical processes, and 
almost all outputs can be used for diagnostic purposes. They are mostly 
of dynamic nature and can be mapped for any () = canst. into the three 
domains already mentioned: the time, frequency, and amplitude domains. 
This mapping serves for further processing and comparison with damage 
characteristics. In contemporary use in machine diagnostics it is mostly 
the vibroacoustic processes that are observed; wear debris and heat, the 
latter for thermography, are sometimes in use as well. As far as the nature 
of dynamic processes in machines is concerned, they are mostly periodical, 
and this is due to the rotational or reciprocal nature of machine opera­
tion, so their analysis is based on the Fourier series, and signal processing 
techniques are mostly applied. The smooth running of machines can be 
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assessed by observing their structural velocities. If higher frequencies are 
of interest, then acceleration (owing to its multplication by w 2 ) should be 
measured as the best quantity chosen. 

Structures. As already mentioned, if material feeding is absent the same 
scheme of machine investigation can be taken for structural diagnostics. 
Energy feeding and control will be in use here only for very advanced 
types of structures (smart and active systems). Hence, most of the inputs 
come from dynamic environmental disturbances. Test forces are generally 
applied for identification and model updating. Many of the environmental 
dynamic interactions are of low frequency content (smaller than 2 Hz), 
i.e. wind and sea waves. Strong excitations, such as hurricanes and earth­
quakes, are causes of severe damage. Output quantities of the structures 
bear the information of the specific loads, and they also contain the resid­
ual process effects, which are dynamic in nature. If one excludes the check 
of thermal resistance here, and probably leakages as well, the same types 
of characteristics as in the case of machines can be used. If stresses are 
of interest, one should know that they can only be measured indirectly by 
strains. For simple structures it can be shown that the stress (0') can be 
calculated by knowing the structural velocity (0' ~ v). In this context one 
should also remember the modal decomposition of the dynamic response, 
for example of 0'. 

Vehicles. Vehicles also have no material feeding (with the exception of 
spare parts etc.). Here the inputs are: energy (fuel), control, environmen­
tal interactions, and testing force inputs. In the case of motors and engines 
the current fuel consumption can be a symptom. The environmental in­
teractions (forces and kinematics) play an important role, often being a 
cause of damage (a rough road, gusty and turbulent atmosphere, etc). For 
output quantities of vehicles the same residual processes as for machines 
can be considered. The desired product of the vehicle is the efficiency, the 
quality and safety of the transport of goods, people, etc. Different pro­
cesses and measures for quality assessment will have different sources of 
diagnostic information. These may be the speed of travel, the vibrational 
and the acoustic comfort in terms of some process amplitude measures, 
etc. Of course, for the internal control of the vehicle engine, and the vehi­
cle motion control, etc., many process parameters and characteristics are 
available, and at the same time they can be used for diagnostic purposes 
in some kinds of performance analysis [22] and process parameter diag­
nostics [109]. But these branches of diagnostics are outside the scope of 
our book. 

In this paragraph the processes and signals of mechanical origin are 
considered in a broad sense. These are vibroacoustical processes taking 
place inside the system and in its environment. The frequency range of vi­
bration starts close to zero and goes up to the ultrasonic of the magnitude 
of Megahertz (MHz). As is well-known, every quantity of a vibroacoustic 
field can be represented in the proper frequency range and with a physical 
dimension. For purposes of machine diagnosis we may use the vibration 
displacement amplitude in the range of 0 to 1 kHz, the vibration accelera-
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Fig. 3.2. Wave distance between two points on the structure (L/ A)and the prevailing type of 
motion with the correlation between signals S, and S2 

tion amplitude in the range of 1 - 10kHz, either the so-called stress wave 
amplitude of the range 40 - 50 kHz, or even the acoustic emission in the 
material of frequency magnitude of 1 MHz. For structures the frequency 
ranges mentioned above are about 10-2 smaller. In some applications these 
quantities can serve directly as symptoms, and in other cases the quantities 
of the vibroacoustic field should be transformed into proper symptoms for 
detection and location purposes. The question arises of what field quan­
tity we should measure dependent on the wave frequency content and 
on wavelengths. The qualitative relation of some vibrational quantities is 
shown in Fig. 3.2. 

This figure was created by the analogy to acoustic reverberant fields 
in rooms [110]. The detailed shape of the graph and the exact values of 
the correlation coefficient depend on the type of the propagated wave 
(spherical, cylindrical, etc.) and the width of the related spectra. But the 
common feature is the spatial uncorrelation of two signals coming from 
the same source f(r, t), with the increased frequency <to the lowest natural 
frequency of the system). One should remember this when seeking damage 
detection by means of correlation or coherence functions. This correlation 
will decrease when additional sources of force come into action (impacts 
due to clearences, etc.) or if the wave distance increases due to wear (the 
crack in the load path, for example). The graph also presents the dominant 
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type of structure motion. One can note that, when compared with the 
wavelength, for large distances between boundaries there will be only a 
boundary effect with adjacent points of the boundary. Inside the structure, 
dependent on the internal damping, travelling waves will prevail. For small 
structures (in comparison to the wave length) the whole body motion will 
prevail, and it will not be possible to distinguish between different signals, 
even those coming from different sources. Hence, for diagnostic purposes 
we should use the proper mixture of the range between standing and 
travelling waves. There is also a need to elucidate the detection distance 
of the fault or damage. According to Huygen's principle, each point of 
an incident wave can be treated as the source of a new wave. Hence, if 
damage is assumed as the wave source, the spatial incoherence of this 
wave should be taken into consideration. This will substantially depend 
on the distance of a few wave lengths (see Fig. 3.2). This property gives a 
clear indication that the distance between adjacent transducers should be 
dri = (ri - ri-d < aA, where r is the spatial coordinate, a is a constant 
with a value between 1 - 3, dependent on the type of wave, the internal 
damping in the structure, etc. 

To sum up the discussion on the mapping of the spatial properties of a 
structure: the medium and the high frequency ranges should be taken, and 
the transducers should be located within the range of a few wave lengths 
for overall diagnostic supervision and as close as possible to the evolving 
damage, provided that we have some prior knowledge from theoretical 
analysis or from experience with the type of system under investigation. 

3.2 
Measurements 

Measurements are goal-orientated. Suitable quantities have to be chosen, 
and they have to fulfil some pre-assumptions. Because measurements are 
generally incomplete and uncertain, they have to be planned and carried 
out carefully. Incompleteness can concern the number of measuring points, 
the required frequency contents of the signals, and so on. Measurement 
errors can be deterministic and irregular. Deterministic measurement er­
rors are the worst case, and they must be detected and removed, possi­
bly computationally. Irregular measurement errors are generally modelled 
stochastically. They can be reduced in the estimates. 

Test conditions should be optimized dependent on the goal and the 
system properties. Test optimization concerns the placement of sensors, 
their choice, and also the choice of test signals, exciters and their loca­
tions. Restrictions are given by the availability of the hardware, including 
financial and time conditions. The remaining conditions follow from the 
choices made before, and the system properties. They concern the fre­
quency range, the type of pre-processing etc. Often the test signal cannot 
be chosen, and the operational conditions must serve for excitation. Then 
the most appropriate operation range has to be chosen which provides 
maximum sensitivity to and maximum information on the damage under 
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consideration. The record length, the sampling etc. have to be chosen de­
pendent on the assumptions to be made about the excitation (e.g. coloured 
noise). Some of these problems are discussed in the following from a sim­
plified but practical point of view. 

Mechanical, civil, aeronautical engineers and others are generally not 
experts in measuring techniques. Therefore they need support in perform­
ing measurements. One possibility is to use an expert system, for instance 
SAMBA2 [Ill] as a system for applying measurements in civil engineering 
which can also be applied easily in other fields of engineering. Included 
in the knowledge-based system SAMBA is an assessment of systems which 
is restricted to particular civil engineering structures. However, due to its 
modular structure it is easy to modify the assessment component. 

In this section only a few recommendations are given concerning en­
vironmental and boundary conditions, sensors3 and the test/measuring 
set-up. A discussion of the (dynamic) properties of the various forcing 
signals can be found by the reader elsewhere [5, 7]. 

3.2.1 
The Goal of Measurements 

In the context of this book two main goals of measurements are empha­
sized: these are the monitoring and the measurements for model adjust­
ment. No distinction will be made between monitoring devices and the 
sensors for the adjustment measurements. Both resulting sets of measured 
data will be used for the model adjustment. 

Model adjustment takes system modifications into account. There­
fore the theoretical studies of possible faults lead to dynamic vari­
ables/parameters sensitive to the parameters possibly changed (Fig. 3.1) 
and to be measured. Otherwise, if the information on model parameter 
changes is missing in the measurements, an adjustment cannot be per­
formed. In other words, if parameter changes, for example, affect partic­
ular modal quantities (degrees of freedom), then the measured quantity 
(e.g. the dynamic response) must contain these degrees of freedom (in this 
example the normal mode deflection) in a non-negligible manner, and it 
must be measured. If, for example, the frequency range of the decisive 
sensor (with respect to the symptom considered) is insufficiently chosen, 
so that the corresponding eigenfrequency is outside the measuring range, 
then this information cannot be obtained from the measured signal. This 
means that the required frequency range has to be determined before the 
measurement takes place. A second requirement comes from the model 
itself: the measured signals should be used with a minimum of manipula­
tions, employing suitable algorithms in order not to introduce additional 

2 Abbreviation for the German System zur Anwendung der Mefitechnik im Bauwesen 
3 Note: sometimes it is desirable to distinguish between sensors, pick-ups and tranducers. 
Sensor is the element of a measuring instrument to which a measurand is directly applied; 
sometimes the pick-up is meant. The conversion part that provides an output with a given 
relationship to the input quantity is called the measuring transducer. Pick-up is the total 
device. Here, generally, the word sensor is used. 
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errors. For instance, an interpolation of the signals of various measuring 
points should be avoided. 

Observability is another problem to be checked in the context of model 
adjustment. Additionally, the problem connected with long-term measure­
ments (stability) has to be solved by the proper choice of sensors, interval­
wise calibration, and computational correction etc. 

3.2.2 
Environmental and Boundary Conditions 

If the environmental conditions affect the object under investigation, then 
they are a part of the system and also have to be modelled. For example, 
the dynamic behaviour of a cable-stayed bridge depends on the temper­
ature. Further environmental influence factors are: external disturbances 
like wind, vibrational and acoustic effects from outside the object, humid­
ity, moisture content and geotechnical factors including changing ground­
water levels. The SAMBA expert system mentioned above provides these 
effects by geodetic measurements. Very often these environmental effects 
are not included in the related mathematical model, while they are within 
the measured data. In so far they have to be recorded and stored and 
taken into account for comparative measurements: this means they must 
be considered parametrically. One consequence is that they should be kept 
constant during measurements. 

Equation (3.0.2) describes the situation with measured external dis­
turbances. In other words, these disturbances have to be detected and 
modelled, or they must be avoided. The worst case is when externally de­
terministic disturbances are present but one does not know about them. If 
environmental effects cannot be modelled as external disturbances because 
an interaction exists between the object considered and its environment, 
then subsystem modelling and synthesis have to be applied. The interaction 
forces are the interface forces between adjacent subsystems [36]. Examples 
of this are ground-structure, structure-structure, and fluid-structure inter­
actions. 

A very special but no less important feedback problem exists with the 
measuring system applied. For example, when one observes lightweight 
systems the weights of the sensors may have to be taken into account. 
Electromagnetic effects can come from the sensors, too, as well as from 
the vibration of not fixed (to the system to be observed) cables, induction 
from neighbouring installed electrical lines etc. In addition, the use of 
artificial test signals by electromagnetic exciters, for instance, can introduce 
some feedback (it is a structural-electric-magnetic interacting system), and 
therefore the force should be measured directly at the input location of 
the system. 

The boundary conditions of the system are pre-determined by the ex­
isting system in operation. It should be noted that the effect of the bound­
ary conditions is restricted to the lower eigenmodes (see the asymptotic 
behaviour of the modes, [30]), which means that for a distance greater 
than 1 wavelength the influence of the boundary condition on the dis-
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placement vanishes [26]. The consequence for the observation of faults 
near the boundary conditions by means of displacements is now obvious. 
The measurement of reaction forces may be suitable in that case [29]. If 
changed boundary conditions due to test conditions are present in the 
measurements, then these effects have to be corrected computationally. 

If tests with a full-scale material model or with a scaled-down model 
have to be performed, then the boundary conditions have to be designed 
and considered in the physical interpretation of the test results and, if 
necessary, computationally corrected (see here the appropriate expositions 
in [5] and [7]). It should only be noted that one never should try to realize 
a rigid fixture which practically cannot be realized. It is much better to 
realize a defined elastic boundary condition and to change the results 
computationally for the required (e.g. rigid fixtures) boundary conditions. 

3.2.3 
Sensors: Properties, Calibration, Measuring Errors, locations 

It is important to choose appropriate sensors for the monitoring and mea­
surements. The sensor has to be chosen dependent on the sensitive (with 
respect to the fault considered) quantity and on the goal. Again, the expert 
system SAMBA is referred to for help. Because it is impossible to give a 
complete introduction to measurement techniques only some statements 
are made on principles and only some practical details given. 

Properties. The principle structure of a seismic sensor is shown in Fig. 3.3. 

The first subsystem of the sensor, mounted on the system, is the sensor­
ing part which moves with the system to be sensored. (It moves identically 
with the measuring point if a rigid connection is achieved in the frequency 
range of interest.) This structural part behaves as, and can be modelled as 
a dynamic SDOF or MDOF model. The movement of this structural model 
then has to be converted into an electrical quantity (w), when we restrict 

rn 

J k 

r(t) 
• 

~(t~ 
V '-~ 

Fig. 3.3. Structure of a sensor in principle 
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ourselves to electrical measurements4 • Consequently, we have to take into 
account the dynamic behaviour (input/output) of a structural system with 
its unit response function in the time domain, and its frequency response 
function in the frequency domain. Additionally, the properties and effects 
due to the conversion used have to be considered; this concerns the am­
plification, the cable shield etc. 

If the user knows this, then he knows that a sensor has an eigenfre­
quency, a damping ratio, and that the dynamic response in the frequency 
domain has to be described by its real and imaginary part, or by its ampli­
tude (magnitude) and the phase response function. Therefore, undistorted 
and non-delayed measured data can only be obtained in a small frequency 
range dependent on the construction of the sensor. If the fundamental fre­
quency of the sensor is known, one should know that an SDOF model is 
a first approximation of a continuum (for example, modelled more accu­
rately as an MDOF model), and therefore the first overtone of the MDOF 
model has to be considered next in order to find out the frequency range 
to be used without correction of the sensed structural dynamic response. 
In summary, one has to be aware that all the dynamic properties of the 
pick-up can theoretically occur and have to be taken into account. This, for 
example, concerns the transient dynamic responses, stochastic responses 
as well as the frequency dependency, which plays a role in calibration. 
Calibration for the static case is useful but not sufficient in dynamic mea­
surements. 

Because it is very informative, the sensor may be modelled as an SDOF 
model, 

mu(t) + cil(t) + ku(t) = pet), 

in the common denotation, and it should be investigated when it behaves 
as a displacement, velocity and acceleration sensor. With the relative co­
ordinate ret) (see Fig. 3.4) and pet) = 0, the equation of motion reads 

mr(t) + cf(t) + kr(t) = -mu(t). 

If one emphasizes the inertia force in the pick-up (Fig. 3.4a) by con­
struction, so that 

1. Imr(t)1 » Icf(t) + kr(t) I 

holds true, then 

~ mr(t) == -mu(t), ~ ret) == -u(t) : 

the sensor works as a displacement sensor (seismometer). The spring only 
constrains the mass, while the damper restricts the amplitude. 

If 

2. Ikr(t) I » Imr(t) + cf(t)I, 

4 SAMBA is not restricted to the electrical measurements of mechanical quantities. 
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Fig. 3.4. Types of sensors in principle emphasizing different forces 

(see Fig. 3.4b) it follows that 

m 1 
"-+ kr(t) == -mu(t), "-+ r(t) == --k u(t) = -2U(t). 

Wo 

The sensor observes accelerations,. 
Finally, if the damping force is emphasized (Fig. 3.4c), then the sensor 

works as a velocity pick-up: 

3. Jct(t)J» Jmr(t) + kr(t)J, 

m 1 
"-+ bt(t) == -mu(t), "-+ r(t) == --u(t) = ---u(t). 

c 2awo 

When one compares the forces of these idealized sensors with the dom­
inating forces in an SDOF model represented by the absolute values of the 
frequency response function, then the relation is obtained as represented 
in Fig. 3.5. For w = 0 and in its vicinity the restoring force approximately 
controls the equation of motion (accelerometer), in resonance the damping 
force dominates (velocity sensor), and for w » Wo (resonance frequency) 
the inertia force controls the movement (displacement sensor). 

In addition, the reader's attention is drawn to the pick-up shown in 
Fig. 3.6. This sensor works in the frequency range of 7 Hz to 100 Hz 
as a displacement pick-up, while the frequency range of 0 Hz to 3 Hz it 
functions as an accelerometer, as explained previously. 

Finally, various mounting possibilities with their structural properties 
are mentioned: Fig. 3.7 follows [112]. The figure is self-explanatory. 
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RESTORING DAMPING 
FORCE FORCE 

a w 

INERTIA 
FORCE 

Fig. 3.S. Dominating forces of an SDOF model and the relation to the principle types of 
sensors shown by means of the absolute values of the frequency response functions 
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EIGENFREQUENCY 5 Hz 
MEASURING RANGE ± 2mm, 7-100 Hz 
OR AS AN ACCELEROMETER 
WITHIN 0 TO 3 Hz. 

Fig. 3.6. A displacement sensor with a fundamental eigenfrequency of 5 Hz (differential bridge 
circuit) 

Of the electric properties, dependent on the type of conversion etc., only 
the distortions by magnetic and electrical fields need to be mentioned. It 
must be repeated that the measuring cables should not be situated in the 
vicinity of power cables. Cable shields should also be used5• The fixing of 
cables has also been mentioned already, because their movement indepen­
dent of the obje ct observed can induce additional signals. 

With regard to the various measuring principles, the measuring chain, 
and their properties, the reader is referred to [113] to [115]. The classifica­
tion of sensors following Ref. [113] should also be mentioned (Table 3.1). 

Calibration. The environment affects the sensor and the total measuring 
chain, and consequently the measuring system output depends on these in­
fluence factors and on the measuring time. The calibration of sensors and 

5 Alternatively, optical fibres can be used, which also can serve as sensors. 
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Fig. 3.7. Absolute values of frequency response functions dependent on different mounting 
types 

the measuring chain and parts of it means determining the input/output 
relationship. Calibration concerns the frequency response function in one 
or several frequencies, the transfer factor (at the frequency 0), and the 
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linearity. The total measuring chain as well as the sensor have to be cali­
brated. Calibration of the sensor includes determining its weight and the 
sensitivities with respect to environmental effects. Of course, the direc­
tional sensitivities of sensors have to be taken into account when fixing 
them for measurement and calibration. Various calibration procedures are 
distinguished. Calibration of the sensor and of the total measuring chain 
can be carried out: 
• Statically: this means that the frequency response is measured for w = O. This can 

be done for seismic sensors using the gravitational field of the earth. The sensor is 
balanced electrically and vertically in one direction, then it is rotated and measured 
in the opposite direction, again loaded with 196. Pick-ups equipped with strain gauges 
can be loaded by known weights. Electrodynamic pick-ups can be calibrated using the 
reciprocity relationship, which means that a current is passed through the coil, producing 
a force. The force is measured by a dynamometer. This type of calibration can be done 
easily by the user. However, the frequency response function and the linearity cannot be 
determined. 

• Direct dynamically: this method uses a known input by mechanical or electro­
magnetic vibrators. The dynamic response is then measured optically, acoustically etc. 
Piezoelectric accelerometers and force transducers are calibrated with this method, for 
example. The method is often used to calibrate the total measuring chain. Some trans­
portable vibration exciters are only able to excite with a fixed amplitude and frequency. 
Possible transverse vibrations of the exciters are dangerous. 

• Indirect dynamically: it is the same procedure as described above. The only differ­
ence is that the excitation is applied in the closest vicinity of the sensor. This method is 
applied for critical elements of a system and serves additionally for checking the opera­
tional integrity. 

• Reciprocally: reciprocity calibration can only be applied for transducers with linear 
conversion elements working in two directions like electromagnetic and piezoelectric 
sensors. The electromagnetic velocity pick-up can be used as a velocity-sensing pick-up 
and as an exciter. The output of the exciter has to be measured and used for calibration. 
It is an absolute method using reference pick-ups. 

• Optically: it is an absolute method using interferometers for reference pick-ups in the 
upper frequency range. It therefore supplements reciprocity calibration. 

• By comparison: the output of the pick-up to be calibrated is compared with an already 
precisely calibrated reference pick-up. The calibration can be affected by the mounting 
of the two pick-ups. Relative movement between the pick-ups should be avoided. 

The measuring chain can also be calibrated without the sensor. The fol­
lowing methods can be used: 
• Calibration by substitution: a substitution is used instead of the transducer. This 

is generally a frequency generator with known output. The sensor has to be calibrated 
additionally. 

• Insert calibration: a voltage source is inserted in series in the cable of the transducer. 
The source simulates the output of a self-generating transducer. The sensor must not 
produce an output signal during calibration. 

6 Gravitational acceleration 
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• Shunt calibration: the method is applicable only to variable-resistance transducers 
when it is not excited. A shunt resistance is connected across the "active" sensor resis­
tance. The change in the bridge resistance is then measured. 

It must be repeated that many effects can influence the measuring equip­
ment, so that at least before and after the measurement (if possible with 
a calibrated sensor) the measuring chain should be calibrated (checked), 
otherwise the user does not know the real output of the system. 

Measuring Errors. Figure 3.8 summarizes the possible errors in a test. The 
input is disturbed by the environment, and therefore the system is forced 
by pet) + net) instead by pet). Sometimes the loading is not by an external 
force but by a force with a feedback of the system: interaction. Additionally, 
the system is influenced by the environment and a possible feedback of 
the measuring system. Consequently, the system output is z(t), as shown 
in Fig. 3.8. The measuring equipment itself is affected by the environment, 
and therefore the output u(t) results as a superposition of Ul (z) and U2(S2)' 

This consideration shows clearly how carefully and professionally tests 
have to be planned and conducted. 

As already mentioned, measuring errors can be deterministic and irreg­
ular. It is much better to speak generally of measurement uncertainties, 
because one does not know the location, the quantity and the type of 
errors. 

Deterministic errors can stem from influence factors, from the measur­
ing equipment, the interaction with the forces, the test set-up etc. Examples 
of this are errors due to 
• influence quantities (environment, user), 
• nonlinearity, 
• erroneous calibration, 
• errors of adjustment, 
• irreversible changes, 
• reversible changes, 
• drifts. 

y 

t 
INPUT I I J MEASUR.ING l OUTPUT 
P p+n I SYSTEM I~-Z-=-Z-l-(-p+-n)-+-~I EQUIPMENT It--U-=-Ul-(-Z-)--i~ 

+Z2(51)+ +U2 (52) 
+Z3(Y) 52 

I ENVIR.ONMENT I 
Fig. 3.S. Possible errors in a test 
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Deterministic errors should be avoided. If they are unavoidable, then they 
must be detected and corrected (at least computationally). Unknown but 
existing deterministic errors are the worst pitfall. 

Irregular errors are 
• reading off, sampling errors, 
• noise due to 

- thermics, 
- the corpuscular nature of the material, 
- electricity. 

Irregular errors are usually modelled stochastically. They should be min­
imized by applying estimators (see Chap. 4). Necessary numerical ma­
nipulations can amplifiy these errors. For example, the differentiation of 
measured signals will amplify the errors, and integration will smooth ran­
dom errors with zero mean, but it will amplify the offset. The averaging 
of repeated measurements (without time lag due to sampling in series of 
various signal channels) is an easy method to apply. It reduces a normally 
distributed random error by ,JljN, if N is the number of measurements. 
More detailed information is given by the t-distribution if a particular 
error is requested. Of course, confidence intervals can be requested and 
fulfilled [48]. 

Hints for reducing measurement errors concern 
• the choice of a suitable measurand (see Sect. 3.1.2) 

- the velocity can be measured in order to obtain information on 
stresses, and to assess the smooth running of a machine 

- acceleration measurements should be made if higher frequencies 
are of interest, and if forces have to be investigated which cannot 
be measured directly 

- the choice of an appropriate location (see the next paragraph) 

• the choice of the right measuring method 
- absolute and relative measurements 
- contactable, contactless 
- active, passive 

• the choice of suitable instruments 
- maximum sensor sensitivity 
- minimum of relevant disturbance influences 
- consideration of dynamics, resolution, measuring interval 
- inaccuracy, linearity, frequency response 
- cable length, cable type, ground loops 
- type of mounting 
- additional instruments, such as pre-amplifier 
- calibration. 

Locations. Prior information about the dynamic behaviour and possible 
faults determine the choice of measuring points. The results of system 
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analysis and experience must be introduced if direct test optimization is 
impossible. The prior information concerns mainly 
• stress peaks, the knowledge of maximum deflections etc. should serve 

for choosing measuring points (possible locations of faults) 
• curvatures of modal shapes should be reconstructable through mea­

sured values (proportional to stresses) 
• zero-crossings of modes should be known (for reconstruction and in 

order to know points for attachment, if necessary; these attachment 
forces will not interact with the system in this particular mode) 

• measuring points should coincide with nodes (collocation points) of 
the mathematical model in order to avoid interpolation and possible 
additional errors. 

Generally speaking, the discretization and modelling rules from analysis 
and simulation should be applied [9]. 

3.2.4 
Test/Measurement Set-up 

Absolute and relative measurements have to be distinguished. Relative 
measurements use a measuring rig, and the quantities are measured against 
it. This measuring rig must, of course, be structurally decoupled from the 
foundation of the test object. Mention has already been made of how to 
fix the sensors and cables, the latter in order to avoid motion relative 
to the test object. If resonance can occur, one should be aware of large 
displacements (reciprocally proportional to the modal damping ratios in 
superposition) and their consequences (space, measuring range of sensors 
etc.). 

A test rig may be necessary if artificial test signals have to be applied. 
This must be decoupled from the object and a measuring rig that may 
possibly have been installed. The realization of pre-defined boundary con­
ditions has already been discussed. If a free-free condition is to be realized, 
then an elastic suspension with a suspension eigenfrequency of less than 
1/3 of the fundamental elastic eigenfrequency of the free-free system is 
required [5]. Additional exciters can sometimes be fastened as a pendu­
lum with a counterweight for good action. Impulse hammers for quick 
investigations are very well known (for their restrictions see [5]). 

3.3 
Signal Pre-processing 

The output signals of the sensors are generally analogue weak signals. 
They must be transmitted over some distances, they must be suitable for 
interconnected instruments, and they must fulfil some requirements for 
manipulation. Signal conditioning is therefore required to convert the sig­
nal in a form acceptable to the equipment to be handled. Signal transmis­
sion by cables (for telemetry transmission see elsewhere) has to consider 
cable properties. The weak signals have to be amplified to values suitable 
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for the subsequent data acquisition and recording. Digital handling of the 
analogue data requires sampling which must fulfil particular demands. A 
quick-look evaluation seems to be advantageous, because often the mea­
surement is not repeatable, or on-line evaluation for quick decisions is 
required. Finally, the signals often have to be filtered, and segmentation 
can help to detect and overcome signal trends or, more generally, insta­
tionarity. 

3.3.1 
Conditioning, Sampling, Pre-analysis 

Interconnection. Cables for analogue signal transmission have special elec­
trical properties: they possess an impedance which affects the signal. The 
output can be affected to a great extent, dependent on different cable 
lengths. The limitations of signal transmission over considerable distances 
depend on the interconnecting medium used, the nature of the monitoring 
equipment employed, and the context in which it is operated. 

Voltage outputs generally can only be transmitted over relatively short 
distances if high precision is required, assuming that only a little current 
is allowed to flow. AC voltage outputs are less sensitive to induced noise. 
Current loops are preferable for transmitting a signal over a few hundred 
metres. The current is typically between 4 and 20 mAo Currents outside 
this range can therefore be used as fault indications. 

Frequency modulation serves for transmitting a signal over long dis­
tances without loss of accuracy and with a low susceptibility to interference. 
It is a signal (carrier wave) with a time-dependent frequency w(t), while 
amplitude modulation is a signal bearing the information by a carrier wave 
of constant frequency and amplitude. 

Amplification. Amplification means increasing the output of a sensor to 
values suitable for further manipulation. One must be aware that not only 
the information in the signal will be amplified, but also the distortions 
contained in the signal. 

Voltage amplifiers can consist of several stages. The voltage of the input 
signal is magnified to an identical waveform, but phase shifted (180°) with 
respect to the input signal. Circuits built from resistance, impedance or 
transformers (ac-amplifiers) are drift-free, but they cannot amplify low 
frequency input signals directly. In this case, carrier frequency amplifier 
systems are used. DC amplifiers can operate up to about 0 Hz, but they 
possess some unstable characteristics. 

Amplifier characteristics can be modified using a feedback circuit 
through which a part (factor a) of the output voltage is re-applied to 
the input together with the original signal. This can easily be seen in the 
frequency domain, where feedback corresponds to a series of frequency 
response functions (F 1 and F2 ) which are mathematically related multi­
plicatively, and the feedback then results in the total frequency response 
function (see Fig. 3.9) 
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Fig. 3.9. Feedback circuit in order to modify the frequency response function of the primary 
device 

Dependent on the feedback circuit frequency response function, the am­
plifier modification can be designed to the requirements. In this way it 
is possible to build filters, integrating as well as differentiating circuits, 
charge amplifiers etc. If, for example, the frequency response function of a 
sensor does not fulfil a phase shift-free transformation, then a connection 
in series without feedback and with its inverse frequency response function 
can help7: 

Fz(jw) = Fil(jW), ~ F(jw) = 1. 

However, it must be stated that its realization restricts this theoretical 
statement. 

Charge amplifiers are used with piezoelectric sensors. The output is 
proportional to the charge of the transducer. In a professional design the 
output (dependent on the frequency contents) is minimum, dependent on 
the cable length, without affecting the sensitivity of the measuring system. 

Impedance-transforming amplifiers are typical pre-amplifiers. They are 
used for capacitive sensors (in the context of bridge amplifiers). They 
decrease the impedance without amplifying the input. In order to minimize 
the connecting cable effects, which are not eliminated, the device should 
be mounted as close as possible to the sensor. 

Quick-look. As already stated, the quick-look is a tool for checking and 
evaluating the currently measured signals. The peak and rms level graphics 
of every channel of a CAT -system are examples. One can take, for instance, 
the output signal of a measuring chain, various signal amplitudes, and 
spectra. The recording level indicator, recorder, oscilloscope, PCs inclusive 
an FFT analyzer etc. are the quick-look equipment. 

Sampling. Digitized handling of the measured signals requires some pre­
cautions. During data acquisition the first step is the triggering of the 

7 As can be seen, in order to know the output one again has to know the transfer properties. 
Then the modification of the sensed signal or the input signal can be computed and, if 
necessary, corrected. 
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measuring equipment. Time series analysis also requires the phase infor­
mation, which implies knowledge of the precise onset of the triggering 
point, especially in the case of a shock excitation, where it is necessary 
to start the measurement at such a time that all the required data are 
captured. 

In many cases during data acquisition, the triggering point occurs well 
after the start of the signal, leading to a possible loss of useful data. On 
the other hand, if the onset of the triggering point is too early, noise is 
added to the signal, which gives rise to additional errors in the data ac­
quisition process. In order to avoid these problems, the signal should be 
fully encompassed by time-windowing. This is achieved by triggering the 
measurement at a suitable point in time of the wave form which, put sim­
ply, is determined by the amplitude and slope of the incoming signal. The 
shape of the signal is thus important for determining the suitable triggering 
point. The criteria for determining the suitable triggering point for mea­
suring as well for signal evaluation are discussed elsewhere [5, 48]. One 
should choose clear characteristics of the process. These considerations 
are also important when manipulating many channels in series [5]. 

Sampling itself should not be a problem if Shannon's sampling theorem 
is taken into account. It provides for the sampled signal to be reconstructed 
for all t (by the cardinal series, sometimes referred to as Whittaker's in­
terpolation formula) in the frequency range considered without loss of 
information. It requires sampling with Ilt == h = 1/ (2 f ~), if harmonics 
with frequencies up to the Nyquist frequency f g should be detected in 
data sampled at intervals M. It should be noted that the harmonic with 
a frequency of exactly 1/(2M) cannot be properly detected, which means 
that the original signal can be reconstructed by the discrete series of the 
discrete Fourier transform (DFT) in the interval [0, f g), Taking into ac­
count the fact that measured signals generally contain frequencies higher 
than f g, for example they are noise-corrupted, then these higher frequen­
cies must be filtered out in order to avoid aliasing. 

Pre-analysis. This is a part of signal analysis: windowing and simple eval­
uation, like peak and zero-crossing counting. The application of a (time) 
window is unconditional in measurements, because measured signals are 
finite length records: this means the application of a rectangular window 

{ I for - T < t < T, w t .-
R ( ) .- 0 elsewhere. (3.3.1) 

to the signal x(t), which is thought of as being defined in the entire interval, 
-00 < t < 00: 

XT(t) := X(t)WR(t)· (3.3.2) 

Other windows serve for smoothing at the interval ends in order to avoid 
jumps of the time functions if periodical continuation is performed, as 
done in DFT. References can be found by the reader elsewhere, e.g. [5]. 
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One should be aware that windowing (multiplication of functions in the 
time domain) results in a convolution integral when Fourier transformed: 

9i'{XT(t)} = i: X (jw')W(jw - jw')dw' (3.3.3) 

with capital letters designating the Fourier transforms of the corresponding 
time functions, the latter denoted by small letters. Only the Dirac function 
Sew) (which corresponds to a window of an oo-width) will give the exact 
transform, while Eq. (3.3.3) contains the error called leakage. A frequency 
(spectral) window is named a filter (see the next subsection). However, the 
reader is referred to the relevant references, for example [5,46]. 

Statistics of narrow band processes are closely related to the above 
discussions, because the limit investigations of WR (t) ~ == 1 results in 
sin:;;/2 ~ Sew) when Fourier transformed. 

Crossing analysis, distribution of peaks, frequency of maxima etc., also 
signal (time series) analysis, can be found by the reader in the well-known 
textbooks, for instance in [46, 5]. 

3.3.2 
Filtering and Segmentation 

Filtering. The aim of filtering is to suppress parts of the signal spectrum 
or to weight signals in the frequency domain. This is important so that the 
damage information in the related signal is not masked. Very generally, 
the signal X(jw) is transformed into the signal Y(jw) by 

Y(jw) = W(jw)X(jw), (3.3.4) 

and then the filtered signal yet) is obtained by the inverse Fourier trans­
form. W (jw) is the filter function. As can be seen, it is a window in the fre­
quency domain, because it is a multiplicative w-dependent transformation: 
W(jw) plays the role of a frequency response function. Consequently, each 
relationship (3.3.4) can be interpreted as a filter. A filter, a frequency win­
dow, corresponds to a convolution in the time domain. Therefore W(jw) 
cannot be chosen arbitrarily when causality is to be maintained8• A filter 
affects the amplitude as well as the phase of a signal. 

Filters are distinguished between 
• active and passive filters dependent on the need for additional energy 
• analogue and digital filters dependent on the type of signal processing 
• their function (see Fig. 3.10): 

- high-pass 
- low-pass 
- band-pass 

8 Convolution in the time domain requires integration from -00, which can mean that the 
system already knows of a force before it starts. 
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LOW-PASS 

HIGH-PASS 

BAND-PASS -.\~, 
BAND-BLOCK 

VARIOUS TYPES OF FILTERS 

Fig. 3.10. Various types of filters 

- band-rejection 
- tracking 

• their type of transfer property, for example Butterworth, which has 
a linear amplitude characteristic (constant amplitude transformation 
within the pass-band). 

Some filter characteristics will now be explained with an analogue low­
pass filter. Then follows a note on the digital filtering and an operator 
description. 

An RC integrating circuit, as shown in Fig. 3.11 is characterized by its 
frequency response function 

[lout 1 

[lin 1 + jwRC 
(3.3.5) 
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Fig. 3.11. Low-pass filter 
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Fig. 3.12. Absolute values of the frequency response function of the RC circuit of Fig. 3.11 

For wRC » 1 it follows 

. U in 
Uout = jwRC' 

which means that it works as an integrator. If wRC « 1, then U out == U im 
and the output voltage equals the input voltage, while the circuit acts as a 
low-pass filter. If the time constant RC has large values, then only the static 
part of the input is unaltered. Figure 3.12 contains the absolute values of 
the frequency response function versus the frequency. 

The analogue realizations of filters result in devices with non-ideal 
characteristics. Therefore one distinguishes between various realizations 
in practice: the Butterworth filter has a linear amplitude characteristic, 
while the Bessel filter has a linear phase characteristic; the latter will be 
applied if the shape of the signal is to be kept. Figure 3.13 represents a 
comparison of various filters with their main (disadvantageous compared 
with the ideal) characteristics. The Cauer low-pass filter is characterized 
by a steep amplitude decrease (it can be used as an anti-aliasing filter) but 
by an undulating property in the pass-band width and in the stop band. 

Digital filtering has the advantage of reproducibility, while analogue 
filters are affected by the environmental conditions. Their time domain 
and equivalent frequency domain properties have to be considered when 
realized in a computer, which means with the consequences of digitization. 
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A recursive digital filter generates the output time series Yn using previous 
output values as input values (feedback procedure): 

m 

Yn = CXn + L gkYn-k· 
k=l 

(3.3.6) 

gk are discrete values of the filter impulse response function. Fourier trans­
formed, Eq. (3.3.6) turns into 

m 
Y(jw) = cX(jw) + Y(jw) L gke-jwktlt. (3.3.7) 

k=l 

Substitution of the exponential functions in the above equation by 

leads to the corresponding expression resulting from the z-transform. The 
related transfer function of the recursive filter follows as 

C 
W(z) = ~m k· 

1 - LA=l gkz 
(3.3.8) 

As can be seen, pre-determination of the location and type of the poles 
serves for the design of the filter. 

The relationship between the RC low-pass filter and the recursive filter 
is performed as an example. The recursive filter may be defined as 

Yn = (1 - a)xn + aYn-l 

with 
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The frequency response function W(jw) then follows with the approxima­
tion a == 1 - (8tjRC) for RC » M as 

W ·w -=- 1 
() ) - 1 + jwRC' 

which is the low-pass filter frequency response function (3.3.5). 
In summary: if the reader is aware of the various transforms and the 

input and output relationships of (causal) systems in the discretized forms, 
then there is no problem in understanding and applying windowing and 
filtering. 

Filtering can also be expressed by the truncation of series. Let us con­
sider a linear equation 

Af = g , A : F -+ W, fEF, gEW, (3.3.9) 

where F and Ware Hilbert domains. A is generally assumed to be a 
non-continuous invertible operator, which means that evaluating f for 
given A and g is an ill-posed problem, and as an algebraic operator it is 
ill-conditioned [72]. When we consider the singular value decomposition 
(SVD) of A, then a regularization of the generalized inverse operator A+ 
of A is 

T yg = L U;;l Fy(u n, g) < g, Un > Vn (3.3.10) 
O"n>O 

with (Tn the singular values and Un, Vn the corresponding left and right 
vectors respectively of the SVD of A. < ., . > denotes the inner product. 
The weighting Fy is a real-valued function which acts on the spectrum of 
the generalized inverse operator A+ like a filter. For example, the low-pass 
filter is defined as 

F (u ) = { 1 for Un ::: 'Y, 
y n 0 for Un < 'Y 

which truncates the sum with respect to a pre-given positive regularization 
parameter 'Y. Signals with high frequency noise are rescued from this noise 
by filtering. 

Segmentation. It means splitting the signal into homogenous parts by 
means of an algorithm. The lengths of these parts are adapted to the 
local characteristics of the signal to be analyzed. The homogeneity of the 
segments can be defined in terms of a mean level or in terms of spectral 
characteristics. As can be imagined, segmentation is a tool for analyz­
ing non-homogenous signals. These are signals which are instationary, or 
stationary with a (deterministic) trend etc. Therefore segmentation is suit­
ably applied in recognition of modifications in order to obtain fewer false 
alarms and missed detections [116]. 
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3.4 
Signal Processing 

As already mentioned, discussions of time series analysis can be found by 
the reader elsewhere [5, 48]. Signal processing contains the manipulation 
of the signals in order to obtain maximum information with minimum 
distortions. Here only methods are mentioned which increase the signal­
to-noise ratio and give the condensation of information. 

3.4.1 
Increase of the Signal-to-noise Ratio 

Synchronized averaging. The simplest method is the averaging of repeat­
edly measured signals with a defined beginning. The random distortions 
with zero mean will be reduced by 1/-J'N if N measurements are taken. 

Correlation analysis. Correlation analysis in the time domain is well­
known. It is the expectation applied to time shifted stationary signals: 

<l>xy(7) = E{x(t)y(t + 7)}. (3.4.1) 

If the ergodic theorem holds, then the estimates can be performed by time 
averaging over a sample of functions (with probability 1): 

11T <l>xy(7) = Rxy (7):= lim - x(t)yCt + 7)dt. 
T~oo T 0 

(3.4.2) 

Noisy signals i(t) =~ (t) + net), yet) =Y (t) + met), where the noise 
signals net), met) are uncorrelated with each other and uncorrelated with 

the undisturbed signals ~ (t), Y (t), yield the relation 

E{x(t)y(t + 7)} = <I> 0(7) + <l>xm(7) 
xy 

<I> 00 (7) + <I> 0 (7) + <I> 0 (7) + <I> nm (7). 
xy xm ny 

When the uncorrelated signals are considered, all the expressions except 
the first one are equal to zero. For x(t) = yet) the latter term in the above 
equation is <l>nn(7), which tends to zero with 7 -+ 00 due to the zero-mean 
of net). In other words, if the measuring time T is large enough, then the 
mean-free stochastic disturbances vanish. Numeric handling is performed 
by applying the cyclic FFT algorithm. 

Spectral analysis. In the frequency domain the Fourier analysis and the 
spectral analysis are well-known. While the Fourier analysis does not con­
tain any expectation, the spectral analysis contains the expectation by 
application of the Wiener-Khintchine transformation, that is when the 
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Fourier transform of the correlation function is considered. However, if 
estimations of the spectral functions are performed numerically, that is 
discretely, then the result is deterministic and built up by the correspond­
ing periodograms (finite discrete Fourier transforms). Here the expectation 
operator has to be included additionally and approximately by smoothing 
(filter) or other operations or by averaging [48, 5]. 

Cepstrum analysis. Another method should be mentioned: that is the cep­
strum analysis. It is based on the natural logarithm of the spectral density 
functions. The multiplicative input/output relationship of systems is then 
turned into an additive relation. The cepstrum analysis is invariant against 
translation, rotation and scale changes by the procedures of the Fourier 
transform - logarithm procedure - (inverse) Fourier transform. These are 
interesting properties for synergetic pattern recognition [117]. 

3.4.2 
Information Condensation 

Some types of information condensation have already been mentioned 
(see Sect. 3.3.1). Here deterministic as well as stochastic methods (e.g 
histogram) have to be enumerated. The SVD (Eq. (3.3.10)) is thus another 
method of information condensation, because it permits the evaluation of 
the singular values and the corresponding vectors (thus in the frequency 
domain). 

Process models like AR, MA, and ARMA9 models also serve for infor­
mation condensation. They will be discussed in Chap. 4. Non-parametric 
methods perform the estimation of the impulse response functions and 
the frequency response functions [4, 5]. Correlation analysis and spec­
tral analysis have already been mentioned. The latter serves for estimating 
resonances of the system and their time-dependent shifts. Experimental 
modal analysis goes beyond this. It uses a model-based evaluation and 
results in various eigenquantities. Further methods exist, but they are not 
itemized here. 

3.4.3 
Inverse Filtering 

Since the measured signals are bandlimited, the effects of bandlimitation 
on the input and output data must be removed prior to identification. 
A simple (suboptimal) method is to use the inverse of the mathematical 
model (the identified one or the one approximated by the prior mathe­
matical model), which will be excited with the measured signal in order 
to obtain an estimate of the deconvolved signal. This approach is applied 
with the input residual WLS method in order to remove the bias approx­
imately. The data are merely filtered with the inverse (identified or prior) 
mathematical model (whitening filter, see Fig. 4.1). This can be performed 

9 AR-MA stands for Auto Regressive - Moving Average. 
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in the image domain by applying the inverse frequency response function 
(Fourier transform) or inverse transfer function (Laplace transform) of the 
mathematical model: P(jw) = F-1(jw)U(jw), or P(s) = H-1(s)U(s). 

Deconvolution as a non-parametric inverse problem is generally ill­
posed [71, 72], and therefore needs to be numerically solved with mea­
sured data and special procedures (regularization). One approach uses 
mean-squared error optimum deconvolution. It is based on correlation 
analysis, takes the impulse response function of the mathematical model, 
and applies the corresponding auto-variance and cross-variance matrices 
[5, 118]. The correlation functions formally fulfil the same convolution 
integral as for deterministic signals. With the application of numerical in­
tegration the estimates, characterized with a hat, lead to the linear algebraic 
system of equations 

(3.4.3) 

in 

(3.4.4) 

with gi := g(ti) and h the time step. For m = N - 1, N the number of 
unknowns, the matrix «I»pp of the auto-correlation functions of the input 
is regular and therefore invertible. However, the resulting vector of the 
aproximated unit impulse function values can be very erroneous. One 
should therefore consider more equations than unknowns in order to apply 
the WLS approach, thus leading to estimates instead of approximations: 

t = («I»~pG«I»pp)-l«l»~pG<<I»pu, 

G is the suitably chosen weighting matrix. 

3.5 
Summary 

(3.4.5) 

The detection of faults and their locations in operating systems depends on 
many stages of reasoning and consideration. It depends on the particular 
monitoring and the type of diagnostics applied. Monitoring is an important 
stage of symptom-based diagnostics. Hence we have briefly elucidated the 
process and the possible links within the system and the damage or fault, 
and the signals which carry the fault-related information. 

Measurements are the only possible way of obtaining the required data 
of the real process and of the existing system. Because these data are 
incomplete and uncertain, they are additionally affected by the measuring 
equipment used, and their manipulation requires the application of special 
precautions and carefully chosen procedures. From this point of view the 
measurements are discussed in some detail in relation to the topic. The 
fact that the engineer involved is generally not an expert in measuring 
techniques is also taken into account. 



www.manaraa.com

114 3. Fault-Related Processes: Monitoring, Measurements, Processing of Signals 

The information contained in the signals and time series can be ex­
tracted and condensed. Many procedures exist dependent on the goal to 
be achieved. However, all the methods use measured data, and when in­
verse problems have to be solved, these problems are generally ill-posed 
or ill-conditioned. This requires special procedures in order to obtain a 
unique and stable solution. 

It is also noted here that ultrasonic testing can be combined with in­
tensity investigations, and with a Volterra series expansion in order to 
handle nonlinear effects. Additionally, smart systems, which are structures 
with built-in measuring capabilities by, for example, multi-functional sen­
sors combined with control devices (e.g. piezo-shells, special composite 
materials), can be applied. In active systems these are feedback-systems 
with control devices; the control forces can be used for fault detection 
(e.g. applying triangularization) and localization. These topics are under 
research. 
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CHAPTER 4 

Model-Supported Diagnostics Via Parameter Estimation 

Monitoring and measurements with some signal processing serve for the 
early detection of system state deviations from the normal (non-faulty, un­
damaged) state. This task will generally be done on-line while the system 
is in operation. The measured process signals within the system's lifetime 
contain some information about the system's state at the time of measure­
ment. As already mentioned, the measured signals are noise corrupted and 
incomplete (e.g. for system description), and in the worst case superim­
posed by systematic errors. Both monitoring, and how the process could be 
identified, are discussed in Sect. 3.1. Monitoring can be performed model­
supported, but due to the demands made by it, parameter estimation is 
generally excluded. A process description may therefore be available, but 
there is no system description at present. 

Within model-supported diagnostics the best available knowledge base 
is the validated model of the system under consideration. The adjustment 
and validation of the mathematical model are done, of course, by the use 
of measured data. Here diagnosis means early fault detection in its broader 
sense, localization, type of fault, finding out the causes of faults, and safety 
assessment and cures, as well as prediction of the state condition. This can 
be done with the use of the adjusted and validated mathematical models 
M i , i = 1, ... , N 1 of the existing system. Because the necessary computa­
tions with the models mentioned are often time-consuming, this is gener­
ally done off-line. This innovatory process has the advantages of 
• further use of the measurements already existing 
• providing the substitution of missing measurements 
• systematic adjustment of the mathematical model at every life time and 

therefore at every system condition (life time-dependent) using prior 
knowledge 

• establishing verified and validated mathematical models 
• simulation and prediction of past and future forces (finding causes and 

cures): safety assessment, and 
• trend forecasts. 

Two learning processes are involved here. The first one concerns the 
system and process in the normal state (~ the validated reference model 
as one part of the knowledge base), and the second one is a self-learning 
process with respect to the life time properties of the system and the 
resulting process by model adjustment at every required state. 

As already mentioned, the problems to be solved are the feature ex­
traction of possible system modifications from the measured signals and 
the suppression of the dominating normal conditions (this includes, of 
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course, the use of known [estimated] normal conditions) in the available 
information. The approach discussed here is the application of system 
identification, and in particular of the adjustment (correction, updating, 
reconciliation, calibration) of mathematical models on the basis of mea­
sured data. The correction can be done in an inverse formulation and 
in a forward strategy by the application of the Bayesian approach and 
multi-hypothesis testing. The forward identification method is applied, for 
example, in [31] and will not be discussed here. The inverse formulation 
with the parameter estimation is restricted to the frequency domain!, and 
here emphasis will be placed on the unconstrained weighted least squares 
(WLS) with some penalty terms, although other estimators are also dis­
cussed. 

4.1 
The General Procedure 

The concept of model-supported diagnostics is discussed in Sect. 1.2, 
shown in Fig. 1.1, and extended in Fig. 3.1. Here the mathematical models 
are assumed as spatially discretized, because in practice the systems sel­
dom allow continuous modelling. The initial mathematical model serves 
for sensitivity studies ("-'+- essential parts of the mathematical model, e.g. 
with respect to load paths and resulting stiffnesses) and for performing 
a catalogue of possible faults based on pregiven causes and the resulting 
consequences for safety requirements. When the system has been con­
structed and the first tests can be made, the initial mathematical model 
will be verified and validated. This model, which is a model with known 
confidence and sufficiently small errors, is used for updating the prior 
sensitivity analysis, and the previous theoretical studies of possible faults 
can be improved. These initial fault investigations are very important for 
the localization, diagnosis and assessment of system modifications during 
the system's life time. 

Observation of the system (monitored data and additional measure­
ments, periodically or on request) yields data dependent on the life time 
()i for an adjusted (with respect to the current state at time ()i) mathe­
matical model. Parameter deviations between the adjusted model and the 
reference model - when submodels are used see Sect. 2.2.6, Eqs. (2.2.24)­
(2.2.27), checked by a pre-defined quality criterion - provide information 
on the faulty process and the system modifications. Of course, the signifi­
cance of the detected modifications has to be investigated (Chap. 5). 

The use of the adjusted mathematical models at previous times and the 
current time permits the user to go into details, which means locating faults 
within the mathematical model and assessing them, providing that the 
mathematical models describe the quantities to be considered sufficiently 
accurately and in sufficient detail. In general, a dynamic model with a few 

I The main experience of the senior author is with regard to the frequency domain. 
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degrees of freedom will not describe stress concentrations if these are the 
quantities taken for decision (Chap. 5) [111]. 

4.2 
Model Adjustment - Preparations 

As already mentioned, model adjustment is a part of system identification 
[5]. The prior model has to be corrected with the current measured data 
in order to obtain a verified and validated mathematical model which rep­
resents the current state. If the model structure is adequate to the system 
behaviour, then model adjustment is reduced to parameter estimation. In 
the following it is assumed that model structure identification is performed 
(for detection and possible model structure deviations see Sects. 2.1.4 and 
2.2.3), so that the problem is reduced to parameter estimation. Estimation 
methods will be applied due to the measurement errors modelled randomly 
and due to the incompleteness of measurements: the use of samples in­
stead of the ensemble. Systematic errors must be avoided, otherwise they 
have to be known in order for them to be corrected computationally. The 
ill-posedness of the inverse problems [72] should be taken into considera­
tion; in consequence, the Bayesian approach is emphasized, since it allows 
the inclusion of prior information. 

The first step in parametric identification is the choice of the model 
formulation (type) and its parametrization (~ the prior mathematical 
model). The second step concerns the measurement. The measured data 
have to fulfil special requirements for model adjustment. Then the resid­
uals performed between the measured/identified quantities and the corre­
sponding quantities of the model to be adjusted have to be considered. The 
last step is the estimation of the parameters required for damage detection 
etc. 

4.2.1 
Models 

Possible structural model descriptions are summarized in Table 4.1 for 
linear systems. 

The equations of motion as well as their solutions in the various do­
mains can be used. The parameter matrices can also serve directly as a 
theoretical basis with their properties decomposed by the related eigenvec­
tors, and then the equations of motion are taken as constraints. Here, in 
general, the equations of motion in the form of Eq.(1.3.I) or in the image 
domain, as in Eq.(2.1.29), will be taken as the model. The assumption of 
the (equivalent) viscous damping seems to be somewhat arbitrary. How­
ever, due to the lack of information and knowledge this is an easy path 
to take, and it will be generally accepted. The assumption of hysteretic 
damping (complex stiffness matrix [5, 6]) seems to be easy, too, but this 
damping model is restricted to harmonic excitation, and is therefore too 
restrictive for application to operating systems. The model structure of the 
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Table 4.1. Systematics of mathematical models 

DOMAIN TIME DOMAIN, IMAGE DOMAIN 

EQUATIONS OF CLASSICAL AS 2nd ORDER ODE 
MOTION ,/ IEQ; FREE, FORCED MOTION 

PARAMETRIC '\( 
STATE SPACE 1st ORDER ODE; 
FREE, FORCED MOTION 

NON-PARAMETRIC: SEE SOLUTIONS 

SOLUTIONS PARAMETRIC: MODAL COORDINATES 

NON-PARAMETRIC: MATRICES OF IMPULSE 
RESPONSE FUNCTIONS; 
FREQ. RESPONSE, TRANSFER 
FUNCTION MATRICES 

PARAMETER 
PARAMETRIC /' SPECTRAL DECOMPOSITIONS 

MATRICES '\. DIRECT 

APPROXIMATIONS DETERMINISTIC: DIFFERENCES, 
NUM. INTEGRATION 

STOCHASTIC: DIFFERENCES (COVARIANCE 

EQUIVALENT) 

ENERGIES, } MODAL, 
WORKS NON-MODAL 

band-limited mathematical model will then be determined by the number 
of DOF given by the initial model and the frequency range of interest. 
If a fault introduces additional DOF, then the mathematical model must 
be changed (see Sect. 2.1.4), mainly by re-modelling [Ill]. In this context 
it will be noted that for the choice of the model formulation its aim is 
essential within diagnosis, including the quantities used for monitoring. 
The model sensitivities as discussed in Sect. 2.1.3 have to be taken into 
account. 

The properties of the equations are important: the posedeness of the 
formulation. For example, determination of the stiffness matrix K or the 
corresponding influence matrix G = K-1, assuming that the inverse exists, 
yields the equations 

(4.2.1) 
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and 

(4.2.2) 

with the use of linearly independent force vectors assembled in the matrix 
Po and with the resulting response matrix Uo. If the test of the system is 
force-controlled, that means the forces to be applied are chosen, then they 
can be chosen such that the force matrix Po is well-conditioned, while the 
response Uo contains the system properties which cannot be influenced. 
Therefore the dynamic response matrix Uo may be ill-conditioned. Conse­
quently, Eq.(4.2.2) is well-conditioned and recommended as a basis. In the 
other case, when the test is diplacement-controlled, the reverse statement 
holds true, and the formulation (4.2.1) can be chosen well-conditioned. 
Consequently, the causality of the problem has to be taken into account. 
The resulting properties (posedeness of the problem) can require a dif­
ferent formulation, especially when measured data with measuring errors 
have to be considered ("-+ regularization methods: modification of the 
mathematical operator, see Sect. 4.4.3). 

If the locations of parameter modifications due to faults are known, 
then it is possible, for example, to model these faults within the state space 
with a fault entry matrix and a corresponding vector with components 
representing the system faults (see Eq.(3.0l)). Here another fault model 
will be applied. Subsystem modelling, as mentioned in Sect. 2.1.3 with 
adjustment factors as introduced in Eqs.(2.2.24)-(2.2.26) for the matrices 
of the submodels, is recommended as an economic and effective procedure. 
It can also be used for detecting the locations of modifications, if necessary 
by submodel halving (submodel refinement). This subject has already been 
mentioned in Sect. 2.2.6. 

Sensor and calibration faults as systematic errors are tackled within 
monitoring and measurements (Chap. 3). In consequence, the irregular 
measurement errors, which are modelled stochastically, require the appli­
cation of estimators (Sect. 4.2.3) for their reduction. In this context it will 
only be mentioned that the Fourier transform of measured signals which 
are corrupted by uncorrelated (to the signal) noise will not influence this 
uncorrelation, while the Laplace transform will result in correlated noise 
in the image domain when discrete transforms are applied. 

4.2.2 
Tests 

Although measuring techniques and signal processing have already been 
discussed in Chap. 3, some remarks are repeated and some additional ones 
are made here. 

Testing includes excitation and measurement. Natural excitation (a sys­
tem in its environment and in operation/service) is often insufficient with 
respect to the amplitude level and the frequency content. The goodness 
of the test results also depends on the experimenter and on the available 
external test conditions, such as the test crew, equipment, time available 
etc. 
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The basic requirements for measurement technology are: 
• repeatability of the measured data (same equipment, same team)2, 
• comparability of the data3 (different equipment, same team), 
• reproducibility of the measurements (different equipment, another 

team). 

The different types of tests are necessary in order to detect different types 
of errors: 
• If the irregular measuring errors are modelled stochastically, then re­

peated tests result in measured data whose measuring errors are sup­
posed to be minimized by applying estimators. Systematic errors are 
not recognizable. 

• The second type of testing should detect systematic errors coming from 
the test equipment if the same procedure is applied. 

• The third test type serves to find out the subjective influence of the 
test teams4 • The statistical errors are generally larger than under re­
peatability conditions, because systematic errors can exist "between the 
different labs". 

Technical properties and requirements can be found by the reader in 
Chap. 3. 

Within identification one has to require 
• observability, 
• controllability, 
• identifiability. 

These items are discussed, for example, in [4]. The reader can find the 
necessary and sufficient conditions for mechanical systems in [106, 108]. 

The experimenter, the environment, the equipment, various possibil­
ities of error, and the type of model with its properties are mentioned 
next. We have to take into account the measurement uncertainties and the 
fact that only samples are available. Different estimators applied to the 
same mathematical model, but written in different formulations, will give 
different estimated values of the same theoretically defined parameters. 
Consequently, the model goal is decisive within diagnosis. 

The measurands have to be defined first. In the context of TACAM 
the first step is structure identification, and the second step, if the struc­
ture is sufficiently approximated, is parameter estimation. In addition to 
the requirements already mentioned, parameter estimation demands the 
consideration of 
• the range of model validity, and, if a test is possible and necessary, 
• an optimum test design so that the resulting model is usable (has suf­

ficiently small errors). 

2 The principle of non-distinguishability ("-' concurrency theory) and weak and strong causal­
ity (chaos theory) are not discussed here. 
3 This is not a technical term. 
4 Possibly dependent on the day of the week: Monday work after the weekend, or Friday 
work looking forward to the weekend. 
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The first requirement concerns the force amplitudes, frequency range, and 
initial conditions for nonlinear systems. The optimum test design deter­
mines the sample size, the measuring points and excitation points to be 
chosen, and if work is being done in the frequency domain it determines 
the frequency spacings. The test design, if required and possible, can be 
based on the information matrix for formulating the optimality criterion, 
as is done, for example, in the paper [119]. Practical constraints often 
prevent optimization, and then prior knowledge and experience have to 
substitute it. 

4.2.3 
Residuals 

The generation of residuals is called transformation into the parity do­
main. Residuals are mentioned in Sect. 2.2.2. There the input, output and 
generalized residuals are shown (Figs. 2.9-2.11), and Fig. 2.12 contains an 
overview. As there are differences between dynamic quantities of the math­
ematical model and the corresponding measured quantities, residuals serve 
for the detection of model deviations and, under particular assumptions, 
for system modifications, as already discussed in Sect. 2.2.6. Local residuals 
can be used additionally for the localization of modifications (Sect. 2.2.6). 
It is repeated that residuals are performed for a state condition at life 
time (h where the prior mathematical model for the state condition 0i-I 

is the basis for the parametrized model to be adjusted. The parameters 
then estimated will describe the modification between the state at time Oi 

and Oi-I. As a reference time, of course, a life time other than Oi-I can be 
chosen. In the following the distinction in notation with respect to the life 
time coordinate will be suppressed. 

In general: with the dynamic quantity a r E en of the mathematical 
model and the corresponding measurements a'; the residual vector is 

vr = a r - a'; E en, r = l(l)N. (4.2.3) 

The dynamic quantity a r is a function of the parameters a to be estimated, 
area), aERJ, j = 1+ R + S is the sum of the number of parameters to be 
adjusted in accordance with Eqs.(2.2.24)-(2.2.26). Of course, the measure­
ments a'; can also be estimates, for example, estimated eigenfrequencies. 

The properties of the residuals are that: 
1. they contain the randomly modelled measurement error which, at most, 

should be additive and uncorrelated, and 
2. their sensitivity with respect to the parameters to be estimated is im­

portant, including the localization properties of the estimates. 

Dependence on measurements. If only the output is additive noise cor­
rupted with zero mean, designated by ret), or in the frequency domain by 
R(jw) = 9J'{r(t)}, and w is the frequency, then the output residual is 

VOr := U(jwr , a) - Um(jwr) (4.2.4) 
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with 

u(jWr,~) - um(jWr) = R(jwr), (4.2.5) 

and fixed values W r • A reminder: it is 

u(jW) = S'{u(t)}, 

and it holds true that 

um(jWr) =U (jwr,~) + R(jwr). 

~ is the 'true' value of a. The residual (4.2.4) is equal to the random error 

with the expectation equal to zero at a =~. The resulting WLS estimator is 
linear with respect to the measurement noise, but nonlinear with respect 
to the parameters to be estimated, because the parameter matrices depend 
on the vector aT = (aL, a~, aIY included in the dynamic stiffness matrix 
which has to be inverted: 

(4.2.6) 

Another reminder: the parameters to be estimated are dependent on the 
chosen submodels describing the defined subsystems designated by their 
indices. This spatial property will relate to the physical subspace. 

The input residual is defined with the excitation vectors as 

VIr: = P(jw" a) - pm (jwr) (4.2.7) 

[-w;M(aM) + jwrB(aB) + K(aK)]Um(jWr) - pm(jwr). 

As can be seen, this residual vector is linear in the parameters to be esti­
mated, but the random disturbances are weighted by the dynamic stiffness 

matrix. At the true parameters ~ it follows that 

VIr(~) = S(jwr, ~)R(jwr) (4.2.8) 

due to 

S(jwr, ~)[U (jwr) + R(jwr)]- I> (jw,) with pm =1>, 
because only the output is corrupted by additive noise. Obviously, the 
residual (4.2.8) results in correlated random errors even ifR(jw) represents 
white noise. It is well known [4] that for least squares estimation using 
a generalized model, the condition for unbiased estimates corresponds 
to the condition of "white residuals". The method of generalized least 
squares [4] applied to generalized models can therefore be seen as an 
attempt to overcome the bias problem by introducing "whitening filters" 
[120, 121]. However, only the dynamic stiffness matrix is known for the 
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0 + p"' I I u urn 

1 SYSTEM 
I + 

-
vr(a) INVERSE vr (a) 
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+ 
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pC(a) 1 I urn 

Fig. 4.1. Inverse filtering of the input residual 

prior mathematical model, a = e := {I}, and in order to avoid iterative 
adjustment, it follows that 

(4.2.9) 

This filtering procedure is shown in Fig. 4.1. The input residuals very 
clearly show the necessity for statistical weighting. The resulting loss func­
tion (objective function) of the WLS now contains the inverse covariance 
matrix of R as a weighting [5]. 

The input is generally also noise-corrupted, and then the input residuals 
directly contain this additional noise. However, when a test is performed 
with artificial excitation, this input noise plays a minor role within the 
input residual method, because the input is controllable within certain 
limits. 

If eigenquantities of the damped system are identified, ABr , ftBr for the 
rth eigenvalue and eigenvector respectively, the modal equation error is 

(4.2.10) 

The residuals of the undamped system correspond to Eq.(4.2.10). In addi­
tion to (4.2.10), the orthonormalization can be taken into consideration, 
and the residuals read [122] 

(4.2.11) 

Additionally, identified generalized masses can be taken into account [5, 
123]. When compared with (4.2.10) the extended residual (4.2.11) signifi­
cantly influences the measurement error propagation. If one assumes that 
the estimates are erroneous with the variances lT~r and lT~r and if one ne­
glects the correlation between the errors of the eigenvectors, linearization 
leads to 

E{ T} . G- 1 (Urn UrnT )-1 
VMNrvMNr = MNr = MNr MNr (4.2.12) 



www.manaraa.com

124 4. Model-Supported Diagnostics Via Parameter Estimation 

with the definition 

U~Nr:= [ A1r:--:(e) :- ABrB(e) + K(e) 
2uBr [2ABrM(e) + B(e)] 

• [ (T urI 0]. 
o (TAr 

[2ABr~~e) + ~(e)]ftBr 1 
2uBrM(e)UBr 

(4.2.13) 

As can be seen, in the above definition (4.2.13) the upper left-hand matrix 
corresponds to the residual VMr without the orthonormalization, which 
is ill-conditioned, because it becomes singular for the eigenvalues of the 
initial model. 

A further generalization can be achieved by taking into account the 
complete orthogonalization properties [5] instead of only the one equation 
(without the null matrices). 

If only the eigenvalues are identified, then the equation error residuals 
can also be taken. However, the present eigenvectors now depend on the 
parameters a to be estimated; therefore the eigenvalue problem has to be 
additionally included in the computation, and the resulting procedure is 
nonlinear in the parameters. In special cases, however, the eigenvectors 
of the initial model can be taken (consequently, the iterative procedure 
can be avoided), because the sensitivity of the eigenvectors with respect 
to the parameters aj. j = 1(1)J, is of second order compared with that of 
the eigenvalues [5]. - With regard to further properties, for example the 
formal similarities of the residuals mentioned so far, see [124]. 

Finally, the partial residuals (see Sect. 2.2.2) will be considered instead 
of the equation errors. They are extensively discussed in [5]. For example, 
if only eigenvalues are measured, then the residual vector is written as 

(4.2.14) 

which can be divided by the initial known values in order to obtain di­
mensionless quantities. 

If the measured, identified quantities are used directly in the residuals, 
then weighting with the inverse covariance matrix of the corresponding 
residuals is sufficient to minimize the stochastic measuring errors (Markov 
estimation [5]). The unbiased estimator will give a lower bound of the 
variances and covariances of the estimates by the inverse Hessian matrix 
taken at the estimates a = a (Rao-Cramer inequality [69]). The Hessian 
matrix is defined as: 

[ az ;}(a)] . ;}(a) the loss function. 
aa/Ja{T 

(4.2.15) 

If the residuals are built up from derived quantities, then filtering similar 
to that used for the input residuals for parameters a at e has to be applied 
in order to reduce the bias of the estimates. 

The correlation of the measurement errors has already been discussed. 
The residual sensitivity with respect to the measurement errors is another 
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property to be considered. Residuals which are performed by estimates, 
such as identified eigenquantities which already contain an error reduc­
tion due to the included estimation applied to measured values, depend on 
the corresponding standard deviations instead on measurement errors. In 
contrast, those residuals which are built up with input and output quan­
tities contain the measurement errors (sometimes amplified, see above). 
Consequently, it is necessary to work with a measurement error as small 
as possible, which means that prior error reduction is recommended by 
using repeated measurements and taking their averages. In the case of 
normally distributed random errors, this results in a noise reduction by a 
factor l/-JN, if N repeated measurements are used. 

Sensitivity with respect to the parameters. The parameter sensitivity of the 
residuals, 

dvr(a) = oar (a) , j = 1(1)J, 
oaj oaj 

( 4.2.16) 

is part of the estimation procedures (see the next subsection). Knowl­
edge of them is useful with respect to the choice of the parameters to be 
estimated in connection with the choice of the submodels (Sect. 4.3.1). Dy­
namic quantities area) which are insensitive with respect to the parameters 
to be estimated do not contain sufficient information to permit accurate 
estimation of these parameters: in this formulation this is an ill-posed 
problem. These sensitivities are discussed in detail in [5]. 

A few examples will demonstrate some interesting properties. With re­
gard to the eigenvalues of the model of the undamped system, Eq.(2.1.38), 
it follows Eq.(2.1.40) with respect to the adjustment factors aKi of the 
subsystem modelling (2.1.37): 

oAor AT K A k 
-,;:}- = UOr iUor =: gri, 
uaKi 

which, when linearized, means 

.:lAor == kgri.:laKi. 

(4.2.17) 

Here the generalized stiffness kgri with respect to the rth eigenvector of 
the unmodified (initial) model determines the rth eigenvalue sensitivity for 
small changes in an This means that the ith submodel stiffness matrix is 
decisive for this sensitivity. It is emphasized that the sensitivity (4.2.17) is 
independent of the eigenvector changes due to aKi. 

The residual sensitivities of the matrix eigenvalue problem of the asso­
ciated undamped system with respect to the inertia parameters aMu and 
the stiffness paramters aKL (see Eqs. (2.2.24), (2.2.25)), 

M' 
K' 
G' 

(4.2.18) 
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follow in accordance withS (4.2.11) as 

VMNr = { [-Ao:~(aM) ~ K(aK))ftor } : 
llorM(aM )Uor - 1 

( 4.2.19) 

( 4.2.20) 

and with the generalized mass with respect to the uth submodel matrix 

(4.2.21) 

The role of the submodel parameters with respect to the identified eigen­
vectors of the total system is obvious, and can be easily assessed. 

The input residual sensitivities in the Laplace domain with respect to 
all the adjustment parameters are (see Eq. (4.2.7)) 

.1YI.r... = s2M Um } aaMu r 0" r 
~ Bum 
aaBp = Sr p r 

~ = KUm 
aaK, L r 

( 4.2.22) 

with U;.n := Um(jwr). They are independent of the adjustment factors. 
For the output residuals it follows with the transfer function matrix 

1!Qr.. 
aaMu 
£xsa. 
aaBp 

£xsa. 
(4.2.24) 

aaK, 

The sensitivities of the output residuals are dependent on the parameters 
to be estimated, which makes the assessment more difficult. 

The sensitivities are summarized in [5, 124, 125). It is again noted that 
the parameters aj as adjustment factors of the submodels are related di­
rectly to the chosen subsystems. Consequently, the relationships between 
the estimates and the possibly faulty/damaged subsystems are given. The 
corresponding sensitivities of the dynamic quantities and the defined sub­
models are performed by the above derivatives with respect to the param­
eters. 

4.2.4 
Estimators 

Basic knowledge of statistics and stochastics is required [94, 12, 13). 
Fig. 4.2.4 gives a classification of estimation procedures [126, 4, 5). Be-

5 ABr is substituted by AOr = w6r' 
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fore the procedures are discussed, however, some terms regarding their 
properties will be defined. 

Some definitions of estimator properties. The sample elements may be given 
vectorially as x. {aN (x)} may be a set of estimation functions (estimates). 

Example: The mean 

is an estimation function of this kind. 0 
aN(x) is also a random variable, which again depends on N random 

variables x. aE"{aN(x)} is defined as an element of the set of estimation 
functions (an estimate), for which N is given. 

The estimate aN(x) is called unbiased, if 

(4.2.25) 

holds true; otherwise it is called biased with the bias 

A 0 b = E{aN(x)}- a =j:. o. (4.2.26) 

The bias of the single estimate a is 

b(a) := a- ~. (4.2.27) 

If the random variable is a, and E{~} =~, then (4.2.26) holds true for the 
expectation when (4.2.27) is considered, 

(4.2.28) 

An estimator or estimate is consistent if the estimate converges with 
probability 1 for N -+ 00 to the true value, 

lim W{laN(x)- ~ I ::: e} = 0 
N---'?oo 

(4.2.29) 

for every e > o. It is sufficient for the consistency of an estimate that its 
standard deviation with increasing N converges to zero (the proof follows 
from the Chebychev inequality). This makes no statement concerning the 
quality of an estimate due to a finite N. Consequently, consistent estimates 
can be biased for a finite N, and an unbiased estimate does not need to be 
consistent. However, a consistent estimate is asymptotically unbiased. An 
estimate is consistent in the squared average if, in addition, the variance 
is zero, 

(4.2.30) 
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The measure for the relative efficiency of estimates a" a2 is: 

( 4.2.31) 

which means that an estimate a2 is more efficient than a, if its variance is 
smaller (7] > 1) than the variance of a,. 

An estimator is called asymptotically efficient if it contains the smallest 
variance of all unbiased estimates with the same information content6• 

Deterministic approximation. The least squares (L5) approach of an 
overdetermined system of equations is well known, 

( 4.2.32) 

and this can be understood as a deterministic method. Its solution will be 
obtained with the Gaussian transformation matrix, and its inverse matrix 
as a pseudo-inverse: 

(4.2.33) 

It can be shown that the problem (4.2.33) is often ill-conditioned [71, 72], 
and that the L5 solution is unique and of minimum energy (norm), which 
makes sense in mechanics. The solution of an underdetermined system of 
equations can be found in the references quoted above, and elsewhere. 

The question arises of how the system of Eq. (4.2.32) will be obtained in 
the context of residuals. In the frequency domain the residuals are defined 
in (4.2.3), and are assembled in the total residual vector 

v = v(a) = {vr(a)} € C"N, 1/ € N. (4.2.34) 

Example: If N eigensolutions ..\Or, ftor are estimated, then the set of available 
measurements consists of N + N n = (n + l)N values, that means 1/ = n + 1. 
o 

When the quadratic loss function 

fh := vT (a)v(a) -+ min(a), ( 4.2.35) 

is defined, and a real vector v is assumed, the necessary condition for the 
extremum is 

oj, (a) I = 2 (avT (a) v(a)) I = 0, j = 1(1)J. oa· oa· 
] a=d ] a=d 

( 4.2.36) 

6 The information content is reciprocally proportional to its variance. 
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After introduction of the sensitivity matrix (Jacobi-matrix) 

( 4.2.37) 

of order (vN, J), the necessary condition reads 

(DvT v) la=a = o. (4.2.38) 

These are J equations to compute J estimates a. If the residual vector v is 
linear in the parameters to be estimated, 

I 

v= Dv a- h, (4.2.39) 

then (4.2.38) leads to a linear system of equations with the solution 

(4.2.40) 

It can be seen in a comparison of Eqs. (4.2.32)-(4.2.33) with the above LS 
equations that A == Dv and f == h. 

The sufficient condition yields the Hessian matrix (4.2.15). The Gaus­
sian transformation matrix (DvT Dv) must have maximum rank J and, 
additionally, 

J ~ vN (4.2.41) 

must he fulfilled. The equality sign gives J equations for the J unknowns. 
In the case of v nonlinear in the a, an iterative procedure has to be 

applied. 
As also can be seen, no statistics are involved in this procedure, with the 

inverse Gaussian transformation matrix interpreted as a pseudo-inverse. 

Maximum-likelihood (ML) estimation. The starting point is the conditional 
pdf. If the measurements Ur, UT, ... ,Ur;; for estimating the parameter 
vector a are statistically independent (see footnote 7), then it holds true 

( 4.2.42) 

The additive measuring error 

(4.2.43) 

has the joint pdf PR (x), which is identical to the conditional joint pdf of 

the residuals v for a =a: 
o 

PR(X) = Pv(xvl a). (4.2.44) 
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With these pdfs and for the measured values Urn, as the estimation function 
for the parameter vector a, one obtains the likelihood function 

L(Um , a) := pv[v(a)] == Pv[Um - U(a)]. (4.2.45) 

The estimation of a consists of maximizing the likelihood function: 

maxL(Um , a) == pv[v(a)]. 
a 

(4.2.46) 

Note: The maximum likelihood estimator provides for the pdf PR(X) to 
have a unique maximum. The normal distribution with zero mean value 

possesses this maximum with E{R} == E{v(~)} = o. 
Because L(Um , a) is non-negative, the maximum locations of L(Um , a) 

and In L(Um , a) are equal. The advantage of the In operation is the resulting 
summation. The estimated vector a follows from 

aL(Um , a) I -0 
aa a=a - . 

(4.2.47) 

If the measurement errors are normally distributed, it follows 

o 1 [ 1 T 0 -I 0] 
PR(X) == pv[v(a)] = (2n")N/2(detC)I/2 exp -2"v (a)C v(a) , (4.2.48) 

with 

C=CRR=C 0 0 =E{vvTI o}, 
v(a)v(a) a=a 

and finally 

1 1 
InL(a) = --In[(21T)N detC] - -vT(a)C-1v(a). 

2 2 
(4.2.49) 

As can be seen, the result is, apart from a constant, a quadratic loss func­
tion in v(a) weighted by the inverse covariance matrix of the measuring 
errors. This estimator is the WLS estimator, and because of the special 
weighting it is called the Markov estimation. 

It can be shown that the maximum likelihood estimation gives consis­
tent and asymptotically efficient estimates. However, this estimator pro­
vides that the pdf of the measuring errors, and therefore that of the mea­
sured values, is known. 

Bayes estimation. Within the Bayesian approach all quantities are assumed 
to be statistical variables which are a priori unknown or uncertain. There­
fore, the vector a is a random vector. Consequently, the parameters aj 

are related to prior pdfs Pa(xa), which describe the uncertainties of the 
parameters. A uniform pdf which, for example, is defined over the to­
tal parameter range, is "non-informative" in this context. The Bayesian 
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theorem [12] states that the a posteriori pdf of the parameters, which de­
scribes the uncertainty of the parameters as random variables after an 
input/output measurement, is related via the likelihood function with the 
a priori pdf of the parameters as follows: 

( 4.2.50) 

The a posteriori pdf of the parameters, of course, is conditioned by the 
measurements7• The estimates a of the a posteriori most probable param­
eter values follow from 

(4.2.51) 

Assuming all the prior distributions as normal (with respect to the 
parameters and the measuring errors), e.g. 

1 T -I Pa(xa) ex: exp[-2(xa - e) Caa (xa - e)], 

where e is the prior most probable value of a and Caa is the covariance 
matrix of a, the estimation of the a posteriori most probable values is 
identical with minimizing the quadratic loss function 

(4.2.52) 

This particular result can be interpreted formally as the extended WLS 
(EWLS), and will now be written as: 

(4.2.53) 

Here it is assumed that v could be complex, and { ... }* designates the 
conjugate complex and transposed vector { ... }. Gy and Ge are composable 

7 The probability distributions of the random variables x, yare called statistically indepen­
dent if Pxy(u, y) = Px(u)Py(v). This is with the probabilities w : W[x < u, y < v) = 
W[x < u)W[y < v), which can be written as W[x < u) = W~t;~~rJ : the probability of the 
occurrence of x < u is true only when those cases where y < v occur are considered. 

The fact that x < u occurs only if y < v occurs can be expressed as conditional probability: 

P(xl ) = Pxy(u, v) 
y Py(v) 

The Bayesian theorem now states 

P(xl ) = P(Y1x)Px(u). 
y Py(v) 
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weighting matrices, which describe the "confidence" in the measurements 
and in the prior knowledge e, respectively: they are the inverse covariance 
matrices C~l, C;./. It should already be noted here that the variances of 
the measuring errors can generally be estimated (approximated). However, 
if the prior values e are those from the prior mathematical model, then 
their covariances or variances are unknown and cannot be assessed ("-'l­
regularization, see next paragraph). 

The extended WLS (EWLS) and their simplifications. The advantage of the 
EWLS is that the solution can be controlled by the penalty terms. This 
does not mean an arbitrary solution, but it means including additional 
information (see Sect. 4.4.3). In order to minimize Eq.(4.2.53) the necessary 
and sufficient conditions that a is a (local) minimum of fh are: 

a13(a) I [* 1 (A -- = m Dv Gyv(a) la=a + Ge a - e) = 0, 
aa a=a 

positive (semi-) definite, with 

12(a) = v*(a)Gvv(a) 

(4.2.54) 

(4.2.55) 

the loss function of the WLS, which means taking (4.2.53) with Ge = O. 
Eq.(4.2.54) together with Eq.(4.2.39) with real values turns into 

(4.2.56) 

As can be seen, the solution is influenced by the weighting Ge in the inverse 
matrix and the weighted prior knowledge Gee. The Hessian matrix (4.2.55) 
of the EWLS is the superposition of the Hessian matrix of the WLS and 
the weighting matrix Ge; this sum must be positive (semi-)definite. The 
estimate a is the a posteriori most probable parameter vector. 

The EWLS (4.2.53) differs from the WLS formulation by the additional 
penalty term within the loss function carrying the prior knowledge from, 
for example, the prior mathematical model or prior parameter estimates. 
The advantages of this extension are manifold: 
• it includes additional information 
• missing measurements can be substituted by theoretical knowledge, for 

example of the prior mathematical model 
• the distance between a and the prior knowledge e can be controlled by 

the choice of Ge 
• the loss function can be made convex by the additional term 
• the additional term can be used for regularization: this means modifying 

the operator of the often ill-conditioned system of equations to be 
solved, so that the modified system of equations is now well-conditioned 

8 Now without the stochastic background! 
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• it can be used to construct an always convergent iteration procedure for 
solving the resultant system of equations nonlinearly in the parameters 
to be estimated9• 

The disadvantage is also obvious: it is the lack of knowledge of Ge, and 
therefore the risk of strongly biased estimates if more guesswork is substi­
tuted in place of information. This weighting matrix can also be determined 
mathematically, which means without direct physical input. One of the pos­
sibilities is to apply cross-validation [128, 72], which means estimating the 
weighting together with the parameters (see Sect. 4.4 on algorithms). 

With Ge -+ 0 the EWLS turns into the WLS, which means that one 
trusts only the measurements. Reciprocally, with Gv -+ 0 one trusts only 
the prior information, a = e, and the information of the measurements is 
suppressed. 

Additionally, the LS method Eq.(4.2.35) is obtained with Ge = 0 and 
Gv = I. However, with statistical weighting (inverse covariance matrices) 
the results are Markov estimates (with minimum variances for unbiased 
estimates). 

It should be noted that the various LS approaches can also be formu­
lated while taking constraints into account. For example, the minimization 
of the loss function (for instance defined as a norm) may be subject to 
some additional information, such as positive definiteness, symmetry of 
matrices etc. The mathematical formulation can be found elsewhere [129]. 
It is discussed as a part of regularization in Sect. 4.4.3. 

Instrumental variables. With the residual vector (4.2.39) linear in the pa­
rameters and a matrix W chosen such that WT Dv is positive definite, the 
orthogonality method is applied, 

WTv = WT(Dva - b) 

with the demand 

E{WT Vla=l} = o. 

(4.2.57) 

(4.2.58) 

The matrix W is called the matrix of instrumental variables, and the 
method is the instrumental variables method (IV). It follows the estimate 

(4.2.59) 

This estimate is unbiased with E{vl ,} = 0, 
a=a 

if WT and vl a=: are uncorrelated (then the E operator can be applied to 
the single factors). 

9 The perturbation method by varying Ge systematically so that the previous solution lies 
within the convergence region of the new (perturbed) system [127). 
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This is the great advantage of the IV compared with the LS methods. 

Because ~ is unknown, it is difficult to find an optimum IV matrix. In 
practice, W is often determined recursively [130]. 

Note: Kalman filtering ([131] to [133]) is well-known for state and pa­
rameter estimation. Kalman filtering is a recursive estimation procedure 
using sequential measurement data sets. The prior knowledge of the pa­
rameters (expressed by their actual covariance matrix) is improved step 
by step by taking the prior parameter estimates and new data for the 
subsequent parameter estimation. This can be understood as a kind of 
regularization (see Sect. 4.4.3). 

Discussion of various estimators. In addition to the classification given in 
Fig. 4.2.4, a hierarchical review is presented in Fig. 4.3. 

The relations between various estimators have already been discussed: 
the Bayesian approach leads, on the one hand, with normally distributed 
random variables (parameters as well as measuring errors) to the EWLS, 
and on the other hand, with Pa(x.a) =const. to the Maximum-likelihood 

BAYES METHOD 

MAXIMUM-
LIKELIHOOD METHOD 

WEIGHTED LEAST 
SQUARES METHOD 

LEAST SQUARES METHOD 

METHOD OF 
INSTRUMENTAL 
VARIABLES 

1 a 
PARAMETER AS RANDOM 
VARIABLE:': WITH PDF Pa(Xa) 

max Pa(XalyM) = max L(yM,xa)' Pa(xa) = 
Xa Xa 

L(yM ,~)Pa(~) 

+ a PARAMETER WITH Pa(xa) = canst. 

ASSUMING A PDF FOR THE ADDITIVELY 
STOCHASTIC MEASURING ERRORS n 

Pn(xn) == Pu(v(~». DETERMINATION OF 
THE LIKELIHOOD FUNCTION 

L(y""', a) --+ max L (yM, a) = L(yM ,~) 
a 

1 V - NORMALLY DISTRIBUTED, 
STATISTICALLY INDEPENDENT 

~ = (DvTGDv)-lDvGb I+-- v- ARBITRARI 
DISTRIBUT 

LY 
ED 

+ G = I 
~ = (DvTDv)-l DvT b 

~ MATRIX OF INSTRUMENTAL VARIABLES W 

~ = (WTDv)-l WT b 

Fig. 4.3. Hierarchical classification of estimators 
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method for additive noise. The latter turns into the WLS for Gaussian 
pdfs and statistically independent measured values. Because in practice it 
is very seldom that any statistical knowledge of the measurements and 
their errors will be available, the assumption of normal distributions is 
in common use; consequently, the EWLS will be recommended. As a re­
minder: the disadvantages are the generally biased estimates and the lack 
of knowledge of the confidence in the prior knowledge. However, if the 
weighting Gv is chosen statistically based (filtering!), then the bias due to 
the correlation of the measuring errors can be drastically reduced, and 
the penalty term in Eq.( 4.2.53) is very advantageous, but with, of course, 
additional expenditure (which has still to be described, see next section). 
The simplifications of the EWLS have already been mentioned: WLS, LS. 
If in particular cases the bias of the estimates from any LS method cannot 
be accepted, then the IV method can be applied. It is an easy method 
to apply; however, the determination of the instrumental variables can be 
difficult. 

4.3 
Model Adjustment - Methods 

With the preparations made previously we are now able to formulate the 
model adjustment methods in order to perform a validated mathematical 
model at every life time e required, assuming that the required measure­
ments are available. Since fewer components of the dynamic response vec­
tor are measured than DOF of the bandlimited model exist, this case will 
be discussed in Sect. 4.5 in order not to interrupt the train of thought. 
Decisions on the significance of parameter modifications are discussed in 
Chap. 5. 

The methods are formulated and discussed for the WLS. This means 
that the application of the EWLS, which is recommended, follows auto­
matically with Eqs. (4.2.54) to (4.2.56). The application of the IV can also 
be performed easily by choosing the residuals and the parametrization. 

In addition to the requirements of verification and validation (see 
Sect. 1.3.1) to be fulfilled from the adjusted model, within the localiza­
tion problem the procedure of halving is already mentioned (Sect. 2.2.6). 
The stopping rule concerning the halving of the submodels is governed by 
the required accuracy with respect to the fault localization. The inaccu­
racy of the estimates will be judged by the estimates of the corresponding 
variances and covariances (see Sects. 4.6.1 and 5.2). 

4.3.1 
Subsystem Modelling 

The first step is the modelling of the possibly occurring local faults, which 
are restricted to those causing parameter modifications lO • Consequently, 

10 Other modifications, for example model structure modifications, must be handled as de­
scribed in Sect. 2.1.4. 
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each element of the parameter matrices should be adjusted. However, be­
cause only a restricted number of measurements are generally available, 
and in order to reduce the expenditure, subsystem modelling (2.2.24)­
(2.2.27) is introduced: 

M C M(aM) L:!-, aM.M. } 
BC B(aB) 2::=1 aBpBp (4.3.1) 
K C K(aK) 2:;=1 aK,K,. or 
GC G(aG) 2:i=1 aG,G,. 

Estimates of the parameters aj will then give estimates of the physical 
parameter matrices (4.3.1). 

The motivation is summarized as follows: 
1. It permits a reduction of the number of parameters to be estimated 

drastically; therefore 
2. it is a kind of regularization (introduction of a coarser parameter topol­

ogy) because, assuming a given set of measurements, one can perform 
an overdetermined system of equations instead of working with an un­
derdetermined one; a smaller number of parameters can be estimated 
more accurately than a larger one, 

3. the expenditure will be reduced, and 
4. it meets current requirements concerning the handling of large systems 
(~ submodels, object-orientated modelling and programming). 

The problems to be solved are the choice of the submodels and how to lo­
cate parameter modifications (fault detection and localization). The choice 
of the submodels is determined by 
1. knowledge of uncertainties of the initial model, for example if 

• slender wings are modelled as Euler-Bernoulli beams, then the tor­
sional stiffnesses result in values that are too small due to the sim­
plifications. The flexibility matrix can be partitioned into 

with respect to the bending z and the torsion a. Now each subma­
trix, extended by null matrices in order to build the matrices G, in 
Eq.(4.3.1), can be taken for correction. 

• Often the coupling between subsystems is difficult to model, and 
then the submodelling can take this into account by introducing 
coupling elements (e.g. spring constants) to be estimated and addi­
tional factors with respect to the submodel matrices, 

2. by prior knowledge from system analysis (see Fig. 3.1), including 
• physically realized subsystems, 
• sensitivity analysis, 
• studies of possible fault effects (selected regions), 

3. direct comparison of computed quantities with the corresponding mea­
sured quantities, for example taking eigenvectors and the residuals per-
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formed by the dyadic products, bearing in mind the spectral decompo­
sitions of the parameter matrices, which then also give the locations of 
the deviations in addition to the size of the deviations. 

4. If nothing is known by modelling and simulation (in contrast to the 
studies requested to be made before, see Fig. 3.1!) before adjustment, 
then more or less arbitrary assumptions must be made. Dependent on 
the results with the assumptions made, recalculations will lead to the 
goal. 

It is again emphasized that prior knowledge of the expected fault locations, 
and consequently of the parameter modifications, can be essential for the 
success of the model-based diagnosis (estimation procedure including the 
interpretation of the estimates). If the chosen parameter topology (choice 
of the aj) is too coarse for the localization of significant parameter mod­
ifications, then sequential halving of the submodels concerned will lead 
to the result [26]. In order to reduce the expenditure, the submodels not 
influenced by the modification due to faults within the adjustment can be 
assembled in one submodel (see M', K' in Eq.( 4.3.30». In consequence, 
if necessary, each matrix element can be estimated, and in this case the 
sub model matrices consist of only one non-zero element. 

The number J of parameters to be chosen, and therefore the choice of 
sub models, must be smaller than the number of equations for the param­
eters in order to approximate the expectation: 

vN> ]. (4.3.2) 

In [68] it is shown that the submodels represented by the correspond­
ing summand matrices in Eq.(4.3.1) cannot be chosen arbitrarily; they 
have to fulfil special requirements which are discussed in detail in [68]. 
Parametrization with submodels has not yet been solved generally. 

If the adjustment factors are estimated by LS, WLS or ML, the involved 
Hessian matrices have to be positive definite in order to yield unique esti­
mates for the factors as dimensionless parameters. Analytical investigations 
show [68] that for this reason 

rank [csM I , csM2 , ... , csMs] 
rank [csB I , csB2 , ••• , csBR ] 

rank [csK I , csK2 , ••• , csKI ] 

= S, } 
= R, 
= I 

(4.3.3) 

are necessary conditions. This means that the column strings of all the 
summand matrices of the mass, damping and stiffness matrices repectively 
must be linearly independent. (csA: "the column sequenced vector struc­
ture of the elements of A" [134]). This problem will be mentioned further in 
Sect. 4.5, accompanied by expenditure minimization using order-reduced 
models, which is based on [68] and [135]. 

Another difficulty exists. The incompleteness of the measurements can 
concern the frequency content. Let us assume that the prior mathemat­
ical model has a bandlimitation of (0, Wb]. The measurements may be 
restricted to (0, WI] with WI < Wb and, for example, the estimated eigen­
quantities are restricted to this interval. Then one can generally not expect 
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that the adjustment procedure will correct the mathematical model outside 
the frequency interval (0, WI]. However, WI must be chosen so large that 
the system modifications occur in the interval up to WI. Very often the 
modifications result in dynamics of higher frequencies [8, 26]. As can be 
imagined, the choice of the submodels (spectral decomposition!) together 
with the frequency information content of the measurements must ful­
fil special requirements. - If the parameters chosen are highly correlated 
(consequently a priori), then their estimates can be very erroneous. Highly 
correlated estimates will follow due to insufficient measurements. Or both 
causes yield correlated estimates (see Sect. 4.6.1). 

4.3.2 
Adjustment Based on Eigenvalues 

It is relatively easy to measure accurately the eigenfrequencies of the as­
sociated undamped system, WOr, r = 1(1)N. These are scalars with a lim­
ited spatial information content (the spatial information is given only by 
the ordering of the eigenfrequencies ~ DOF, see Sect. 2.2.6). The partial 
residual as well as the equation error can be used; both resulting proce­
dures require computation of the adjusted eigenvectors. These methods 
are therefore adaptive with respect to the eigenvectors. 

Partial residuals. First of all, only the stiffness matrix will be adjusted. The 
residual vector is defined as 

(4.3.4) 

The functional matrix ( 4.2.37) follows to 

DVI = ["av i , ... , av l ] . 
uaKI oaK! 

( 4.3.5) 

It is an (N,1) matrix (with v = 1). The partial derivatives are given by 
Eq. (2.1.40) or by (see Eq. (4.3.11» 

( 4.3.6) 

and with the parametrization 

[ 

K C = K(aK) = L aK,K,. (4.3.7) 
,=1 

As can be seen, the eigenvectors ftgr = Uor(aK) depend on the parameters to 
be estimated; consequently, the generalized stiffnesses (4.3.6) with respect 
to the stiffness parameter matrices of the submodels Ki also depend on 
the parameters: the eigenvectors also have to be estimated (theoretically). 
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The components of (4.3.4) follow to 

( 4.3.8) 

With reference to (4.2.39) one obtains a pseudo-linear equation 

(4.3.9) 

with 

Application of the WLS or EWLS leads to a system of equations nonlinear 
in the parameters. Therefore an iterative algorithm has to be applied; this 
includes the use of the eigenvectors as solutions to the associated matrix 
eigenvalue problem 

(4.3.11) 

for each r and for every iteration step with the resulting iterated parameter 
vector. This procedure automatically implies the one-to-one relationship 
of the computed eigenquantities to the identified eigenfrequency in each 
iteration step. Generally, this does not have to be an easy task; sometimes it 
is impossible to perform it without additional information [5]. It should be 
noted that the proof of the one-to-one relationship of the eigenquantities 
can be done using the generalized orthogonaltiy properties, which means 
with the iteration index k, 

t'L (a(k+l))Mu(k)(a ) = 8k+1,k 
-urK OrK r' ( 4.3.12) 

The Kronecker 8 must be approximately equal to one with the right rela­
tionship, otherwise it will be approximately zero. The procedure is sum­
marized in Table 4.2. 

As already mentioned, the iteration can be avoided in those cases where 
the eigenvector modifications due to the faults are small. Then the proce­
dure can be performed with the eigenvectors of the prior model, and it is 
linear in the parameters; the solution is then given by Eq. (4.2.56) and its 
simplifications (see Table 4.2). 

When the spectral decompositions of the stiffness matrix and the flex­
ibility matrix were being discussed, it was stated (see Sect. 2.1.3) that the 
stiffness matrix adjustment is suitable for higher frequency content modi­
fications and, vice versa, for the flexibility adjustment. Since, for example, 
cracks mostly introduce high frequency distortions, the stiffness formula­
tion is emphasized. However, flexibility adjustment follows the same pro­
cedure in principle if inverse eigenvalues are taken: 

( 4.3.13) 
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Table 4.2. Partial residuals: adjustment of the stiffness matrix by the use of measured eigen­
values (eigenfrequencies) 

DESCRIPTION 

PARAMETRIZATION 

MEASUREMENTS 

RESIDUAL VECTOR 

MATRIX EIGENVALUE 
PROBLEM 

ITERATION 
PROCEDURE 

SIMPLIFICATION 

FORMULA 

I 

K' = K(aK)= EaK' K, 
L=l 

r = 1(1) N 

(-A~?) M + K,(k) ii~r(k) = 0, 

k-ITERATION INDEX DUE TO a~) WITH 
a~) = e, K,(k) = K(a~) etc. 

SEE EQ. (4.2.54) OR: 

a~+I)=(Dvik)T GyDv;k)+G,)-1 

. (Dv;klT Gyb1 +G,e), 

k = 0,1, ... , a~+l) --+ AK 

WITH 

AND (4.2.56) LINEAR IN a 
(INDEPENDENT OF k). 

NOTE 
(EQ. NO.) 

(4.3.7) 

(4.3.4) 

(4.2.56) 

(4.3.10) 

EMPHASIZING DOF 
WITH HIGH EIGEN­
FREQUENCIES 

WITHOUT 
SIMPLIFICATION: 
ADAPTIVE PROCEDURE 
WITH RESPECT TO THE 
EIGENVECTORS, 
BECAUSE THEY WILL 
ALSO BE ADJUSTED. 
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The parameter sensitivity is 

(4.3.14) 

and equal to the generalized flexibility with respect to the submodel flexi­
bility matrix G. in the r-th eigenquantities. The sensitivity matrix Dv2 and 
the vector b2 are built up in a similar way to the stiffness formulation 
(Table 4.3). 

If only the inertia matrix M is to be adjusted, 

s 
M(aM) = LaMO'MO', 

0'=1 

we introduce the reciprocal eigenvalue 

KOr:= \' 
/\Or 

and write the matrix eigenvalue problem in the form 

(4.3.15) 

(4.3.16) 

(4.3.17) 

Then it can be seen that the same formalism is valid as in the case of the 
stiffness adjustment, if 
• the residuals V3 with regard to the reciprocal eigenvalues are performed 

(see Table 4.4) 
• the generalized stiffnesses are substituted by the generalized masses 

• the normalization is changed into 

ANTKAN 1 AN UOr 
110r UOr = , 11Or:= 1,JAo;:1' 

in accordance with the matrix eigenvalue problem ( 4.3.17). 

Of course, the resulting adjustment procedure (see Table 4.4) is a non­
linear one. 

If both matrices, the inertia matrix as well as the stiffness or flexibility 
matrix, are to be adjusted, then the procedures discussed can be applied 
group-wise iteratively. For example, in the first iteration step one starts 
with the adjustment of the inertia matrix, taking the stiffness or flexibility 
adjustment factors equal to 1. Then the next iteration step concerns the 
stiffness matrix with fixed inertia matrix adjustment parameters etc. The 
advantage of this procedure is that the same routine can be applied for 
both iterations, and merely a re-arrangement of the data has to be made. 
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Table 4.3. Partial residuals: adjustment of the flexibility matrix by the use of measured eigen­
values (eigenfrequencies) 

DESCRIPTION FORMULA 

I 

PARAMETRIZATION G' = G(aG) = :~::>G,G, 
L=) 

MEASUREMENTS r = I(I)N 

RESIDUAL VECTOR T( ) _( I I I I ) 
v2 aG - AOl (aGl - Aol •...• AON('Gl - r;;;; 

MATRIX EIGENVALUE KOr:= A~r' 

PROBLEM (_Gc(klM + K6~lI) (j~;kl = 0 

ITERATION 
PROCEDURE 

SIMPLIFICATION 

k-ITERATION INDEX DUE TO a~) WITH 

a~l = e, Gc(kl = G(a~» etc. 

NORMALIZATION: (j~;k)TM(j~;kl = I 

SEE EQ. (4.2.54) OR: 

a~+ll=(DviklT GyDvfl +Ge)-I 

. (DviklT Gy b2+Gee), 

k = 0,1, ... , a~+I) ---+ aG 

WITH 

SEE TABLE 4.2 

NOTE 
(EQ. NO.) 

(4.3.13) 

(4.3.14) 

EMPHASIZING DOF 
WITH SMALL EIGEN­
FREQUENCIES 

WITHOUT 
SIMPLIFICATION: 
THE EIGENVECTORS 
WILL ALSO BE 
ADJUSTED (ADAPTIVE 
PROCEDURE) 
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Table 4.4. Partial residuals: adjustment of the inertia matrix by the use of measured eigenvalues 
( eigenfrequencies) 

DESCRIPTION 

PARAMETRIZATION 

MEASUREMENTS 

RESIDUAL VECTOR 

MATRIX EIGENVALUE 
PROBLEM 

ITERATION 
PROCEDURE 

FORMULA 

s 

M' =.M(aM) = l:aMuMu 
u=l 

r = 1(1) N 

(-K6~)K + M')fi~(k) = 0' 

k-ITERATION INDEX DUE TO a~) WITH 
a~ = e, M,(k) = M(a~» etc. 

NORMALIZATION: 

SEE EQ: (4.2.54) OR 

a~+l) = (Dv~k)T GvDv~k) + Ge)-l 

.(Dv~k)T Gvb3 + Gee), 

k = 0,1, ... , a~+l) -->- aM 

WITH 

NOTE 
(EQ. NO.) 

(4.3.15) 

(4.3.16) 

(4.3.17) 

THE FORMALISM OF 
TABLE 4.2 IS VALID 
WITH THIS 
NORMALIZATION AND 
THE SUBSTITUTION 
OF THE GENERALIZED 
STIFFNESSES BY 
GENERALIZED MASSES 

m:ru 

IT IS AGAIN AN 
ADAPTIVE PROCEDURE 
WITH RESPECT TO 
THE EIGENVECTORS 

Equation errors. The matrix eigenvalue problem with the identified eigen­
values will give the equation errors instead of the null vector for the ad­
justment of the stiffness matrix, 

( 4.3.18) 

The total residual vector is 

(4.3.19) 
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which is dependent on aK. In order to perform the sensitivity matrix DV4, 

Eq. ( 4.3.18) will be partially differentiated with respect to aKL: 

dv4r. • aiior(aK) - = KLUor(aK) + [-AorM +K(aK)] , L = 1(1)1.(4.3.20) 
aaKL aaKL 

Equation (4.3.20) contains the partial derivatives of the eigenvectors to be 
adjusted with respect to the parameters to be estimated. If these deriva­
tives cannot be assumed to be equal to zero, then two possibilities exist 
for their determination. One uses the differentiated eigenvalue problem, 
while the other is based on the spectral decomposition of the differentiated 
eigenvectors. The abbreviation 

(4.3.21) 

may be introduced. The superscript will now generally be used in order 
to express the dependence on the parameters to be estimated. The matrix 
eigenvalue problem 

(4.3.22) 

differentiated with respect to aKL yields the linear algebraic system of equa­
tions 

(-AgrM+KC)t~L = (k~TLM-K.)ugr' r = 1(I)N, L = 1(1)1,(4.3.23) 

with the singular system matrix (rank n - 1 for disjoint eigenvalues) de­
pendent on aK' Therefore t~L exists and can be calculated in every iteration 
step (by choosing one component arbitrarily). The other possibility men­
tioned is spectral decomposition 

(4.3.24) 

which requires all the eigenvectors to be adjusted. The result is [5] 

( 4.3.25) 

This is a special solution, to which the eigenvector iigr can be added when 
multiplied with an arbitrary constant c. However, we are interested in a 
normalized eigenvector, and therefore c = 0 is chosen. 

The procedure can be formulated with these equations. It is a nonlinear 
one in the parameters to be estimated. Because the eigenvectors also have 
to be adjusted, the computational expenditure is large. In the cases where 
the eigenvector derivatives are negligible (the partial eigenvector modifi­
cations are of second order compared with those of the eigenvalues), the 
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prior eigenvectors can be used, and this produces a linear procedure with 
(see Eq. (4.2.56» 

1 ' 
(4.3.26) 

The formalism is summarized in Table 4.5. 
For the adjustment of the flexibility matrix see [5, 6]. 

Table 4.5. Equation error: adjustment of the stiffness matrix by the use of measured eigen­
values (eigenfrequencies) 

DESCRIPTION FORMULA 

I 

PARAMETRIZATION K' = K(aK) = I:>K,K, 
t=l 

MEASUREMENTS Aon r = 1(I)N 

RESIDUAL VECTOR vI (aK)= (vI" ... ,VIN) 

MATRIX EIGENVALUE (-Ab~) M + K'(k»il~;k) = 0, 

PROBLEM 
(-AorM + K'(k»il~;k) = v~k) 
k-ITERATION INDEX DUE TO a~) WITH 
a~) = e, K,(k) = K(a~» etc. 

NORMALIZATION: il~; Mil~r = 1 

ail' 
SIMPLIFICATION q;, = q,,(aKl = ~_ = 0 

APPROXIMATION: aK = aK 

SOLUTION iK = (D;l G. D;4 + G,)-I 

·(Dv, G.b, + G,e) 

WITH 

DV4 = [ ~I.~~I.'.'.'''.'. ~~~.Ol ... l KI ilON •.... KliloN 

bI = (-Aol il~1 M, ... , -AONil~NM). 

NOTE 
(EQ. NO.) 

(4.3.7) 

(4.3.18) 

(4.3.26) 

WITHOUT THE 
SIMPLIFICATION THE 
PROCEDURE IS 
ITERATIVE AND 
ADAPTIVE WITH 
RESPECT TO THE 
NON-MEASURED 
EIGENVECTORS 
(SEE(4.3.18) TO (4.3.25) 
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4.3.3 
Adjustment with Identified Eigenvalues and Eigenvectors 

Although partial residuals can be applied, with the disadvantage of the nec­
essary one-to-one relationship between the iterated and measured eigen­
quantities, this requirement is automatically fulfilled by using the equation 
error. Therefore only this procedure will be discussed. For special cases, 
for example where only the eigenvalues are measured, see [5]. We have 
to distinguish between the identified eigenquantities of the undamped and 
the damped model. 

The eigenquantities of the undamped model. Simultaneous adjustment of 
the inertia and the stiffness matrices leads to the residual vector VMNn 
Eq. (4.2.19), with the sensitivities (4.2.20) with respect to the parameters. 
With 

and 

DvM := [dvMN r ], r the row-index and (T the column-index, 
aaMu 

DVK := [dvMN r ], L the column-index, 
aaKL 

and if the matrices are partitioned in such a way that 

5 I 

Me = M' + L aMuMu, Ke = K' + L akLKL, 
u=1 L=1 

(4.3.27) 

(4.3.28) 

( 4.3.29) 

(4.3.30) 

which means that the matrices with a prime remain non-adjusted (by 
prior knowledge), it follows the procedure linear in the parameters to be 
estimated: 

(4.3.31) 

The particular cases when only the stiffness or the inertia matrix is to 
be adjusted will also follow from these equations. For S = 0, I > 0 the 
residual vector Vs has to be differentiated only with respect to aK" so that 
Dvs is transferred to DVK and 

bI = bk = 
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A AT AT A A AT AT A = -(-.A01llo1M, uolMUoI - 1, ... , -.AONuONM, uoNMUoN-1) 
for K' = O. (4.3.32) 

It follows DvMe = bK. Further special cases follow without difficulties. The 
procedure is summarized in Table 4.6. 

Table 4.6. Equation error: adjustment of the stiffness matrix by the use of measured eigen­
values (eigenfrequencies) and eigenvectors (normal modes) 

DESCRIPTION FORMULA 

I 

PARAMETRIZATION K' = K(aK) = K' + I: aK,K" 
t=] 

S 

M' = M(aM) = M' + I: aMu Mu 
u=l 

MEASUREMENTS Aor ,(lor, r = 1(l)N 

RESIDUAL VECTOR VMNr = (-Anr M' + K') fior, r = I(I)N, 

Vs = DVM aM + DVKaK - bs, 

SOLUTION 

SIMPLIFICATIONS 

%N(-AoNM' + K'), doN M'-l) 

a = (Dl{Gy Dvs + Ge)-l 
.(Dv~ Gybs + Gee), 

a:= { :: } 

FOR EXAMPLE S=O, 1>0 AND 

NOTE 
(EQ. NO.) 

(4.3.30) 

(4.3.31) 

(4.3.31) 

(4.3.32) 

NO ONE-TO-ONE 
RELATION BETWEEN 
CALCULATED 
EIGENQUANTITIES 
IS REQUIRED 

N.B.: THE BIAS OF 
THE ESTIMATES HAS 
TO BE REDUCED 
BY FILTERING 
(SEE SECTION 4.2.3) 
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The eigenquantities of the damped model. The residual vector is defined 
by Eq. (4.2.11) with (4.2.10), from which the sensitivity matrix follows. The 
parameter sensitivities are easily obtained by partial differentiation with 
respect to the parameters linear in the equations. Therefore the LS solution 
is a linear system of equations which, however, results in a biased estimate, 
and therefore it needs statistically based weighting, as is the case for the 
input residuals (see Sect. 4.2.3). The formalism is summarized in Table 4.7. 

Table 4.7. Equation error: adjustment of the stiffness and inertia matrices by the use of 
measured eigenfrequencies, damping ratios and eigenvectors 

DESCRIPTION FORMULA 

s 
PARAMETRIZATION M' = M(aM) = 2:)MO'M,n 

MEASUREMENTS 

SOLUTION 

4.3.4 

u=1 
R 

B' = B(as) = L aBvBv' 
V=1 

I 

K' = K(aK) = L aK, K, 
L=l 

Adjustment Based on Input/Output Measurements 

(4.3.1) 

(4.2.10) 

SEE [123J 

The experimental determination of eigenquantities is subjected to estima­
tion. It is an initial condensation of information from special input/output 
measurements [5]. Instead of following this path, the measured input and 
output quantities can be taken directly for adjustment. As already men­
tioned, averaged measurements should be taken for adjustment if possible. 

The use of input/output measurements can be superior to that of in­
complete eigenquantities if all the modes are contained in the related in-
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put/ouput measurements in a non-negligible manner, assuming that the 
random measurement errors are sufficiently small. 

Output residuals. The output residuals are defined in Eq. (4.2.4), written 
out in full using the Laplace transforms, 

vor(a) = [s;M(aM) + srB(aB) + K(aK)]-lpm(sr) - Um(sr)' (4.3.33) 

Eq. (4.2.24) contains the parameter sensitivities. The sensitivity matrix 
follows with the abbreviation 

H~:= HrCa) ( 4.3.34) 

to 

DvO 
_ [ siH~~IUf 

s~H~MIU~ 

Hf.K.I.Uf ]. (4.3.35) 
H~KIU~ 

Taking into account that the quantities are complex and the estimates 
required are real, then the necessary condition (4.2.54) yields for the WLS 

m [L~=l s;U~TM(TH~Gvr(U~ - U~)] la=ii 

m [L~=l srU~TBpH;G~r(U~ - U~)] la=a 

m [L~=l U~TKtH;G~r(U~ - U~)] la=ii 

0, (J' = 1 (1)S, } 

0, p = 10)R, 

0, t = 10)J, 

(4.3.36) 

n means the conjugate complex value of ( ... ), and the weighting ma­
trices Gvr , G~T' G~r are quadratic of order n and must be positive definite. 

This iterative procedure has the advantage that it is asymptotically un­
biased. The Hessian matrix (4.2.15) gives a lower bound of the parameter 
covariances [5]. However, it is difficult to find starting values for which the 
iteration converges, because the convergence domain can be very narrow. 
Simulations with M = MT show that 
1. fast convergence and an extension of the convergence domain for 

the Newton-Raphson method can be achieved by the use of not too 
small additive damping (in the Laplace transforms instead of using the 
Fourier transform) for the dynamic responses due to impulse testing, 
and 

2. the iteration may converge if an initial iteration for aK is performed 
with fixed aB = e. Then aK and aB will be iteratively determined, 

3. the narrow valley of the loss function hyper-surface at the minimum 
can be widened by the use of state observers (see Sect. 4.3.5). 
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Recent research is directed to the application of interval arithmetics in the 
context of the linear (in the parameters to be estimated) input residual 
method (see next paragraph) in order to obtain an enclosure for the so­
lution [136]. This enclosure, if not sufficiently accurate, can be improved 
by the nonlinear output residual method. In addition to the enclosure 
of the solution, the linear system of equations to be solved has the ad­
vantage of yielding the global minimum. Another direction of research 
is the combination of mapping applied to the output residual method 
with the selective sensitivity (see Sect. 2.1.3). The adaptive forces and the 
corresponding dynamic responses needed for this will be computed from 
existing input/output measurements [137]. 

Input residuals. As already stated, this procedure uses the adjustment of 
the input vector, described here in the image domain. The residual is de­
fined in Eq. (4.2.7), and the parameter sensitivities are given in Eq. (4.2.22). 
The sensitivity matrix reads 

[ slM,U~ siMsUT slBIUT 
Dvl = 

s~MI UIJ s~MsUIJ sNB I UIJ 

slBRUT KIUT " . 
K:IY," 1 ... (4.3.37) 

sNBRUIJ KIUIJ " . K1UIJ 

It is a linear method in the parameters to be estimated, because DVI is 
independent of a. With parametrization like (4.3.30) for all the parameter 
matrices, the right side of the system of equations is 

bi := -(PTT - UTT (siM' + sIB' + K'), 

... , PIJT - UIJT (s~M' + sNB' + K'». (4.3.38) 

The particular cases follow easily. 
Statistically based weighting is conditionally necessary, as stated in 

Sect. 4.2.3. The noise-to-signal ratio has to be very small (averaging). 

Choice of frequencies The computations are carried out for W r , r = 1 (I)N. 
The procedure discussed here has the property v = N. N should be 
chosen as large as possible. However, sensors have a relative measur­
ing error dependent on their measurement interval, and therefore it is 
not advisable to measure and use very small values of the dynamic re­
sponses compared with the maximum values. Consequently, transformed 
measurements should be chosen adjacent to the resonance frequencies. It 
is necessary to take at least a minimum number of frequencies Wr close to 
each resonance peak in the frequency response function. In general, only 
a few (:::: 15) frequencies per resonance peak are necessary; their actual 
number depends on the chosen frequency spacing and the damping ratios 
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Fig. 4.4. The procedure using state observers 

of the eigenmodes of the system [119]. Frequencies chosen too close will 
not extend the information of the measurements, because these measured 
values are (deterministically or) stochastically dependent on each other. 

4.3.5 
State Observers 

The state observers, well-known in control theory, are generally used for 
the state reconstruction of non-measured states x(t). The advantage of state 
observers is that they can be formulated adaptively, which means that they 
are applicable in the case of large measuring errors. Their combination 
with parameter estimation smoothes the loss function hyper-surface and 
widens the often very small valley with respect to the (global) minimum 
[138]. 

The details will be very briefly summarized here following [138], with­
out including the more recent developments of the additional error mod­
elling of parameters and of measurements, as is mentioned at the beginning 
of Chap. 3. Figure 4.4 explains the procedure. The state observer is used 
in order to reconstruct all the system states with the help of the measured 
states. These "estimates" will then be used for parameter estimation: substi­
tuting non-measured states by reconstructed states, which means extend­
ing the number of equations used (~ regularization). It should be noted 
that the reconstruction uses the prior mathematical model, and therefore 
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it may feign additional knowledge. In [138] it is shown that the output 
residual method combined with the LS estimation is a special case of the 
adaptive state observer. 

The time-discrete formulation for the linear model (following Eq. (3.01) 
without noise and disturbances, see [106, 139]), X(tk) =: Xb 

Xk+1 = AXk + Bfb ( 4.3.39) 

leads to the Luenberger observer 

Xk+1 = AIXk + A2Yk + A3fk, (4.3.40) 

where (. ~.) designates the reconstructed state vector. Yk are the measure­
ments. The requirement 

IlX(t) := x(t) - x(t) -+ 0 ( 4.3.41) 

leads to 

( 4.3.42) 

where H stems from the measuring equation 

yet) = Hx(t). ( 4.3.43) 

The requirement with respect to the error (4.3.41) turns into the observer 
design 

It follows 

A-A2H, } 
B. (4.3.44) 

(4.3.45) 

which means that the reconstruction error obeys the same dynamics as 
the state observer. 

If H is given, and in practice it should be chosen dependent on the 
needs, only Al or A2 can be chosen. In order to make sure that the pro­
cedure converges and that the solution is stable, the observer dynamics 
should be chosen by the choice of its eigenvalues. For the computation of 
the observer matrices see [140, 141]. 

If it is provided that the measurement noise has statistical properties, 
then the Kalman filter follows (see the note in Sect. 4.2.3). From the point 
of view of the possibility of the observer design, it has the disadvantage 
that the design of the filter is automatically determined by the statistical 
properties of the errors. The reader can find the theory of Kalman filter­
ing in [133], and a description of the system identification including the 
parameter estimation by Kalman filter ll and its application to concrete 
structures in [142]. 

II Kalman filtering can be seen as a recursive Bayesian approach [4], p.426 ff. 
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The special case of the output error residual is obtained with Al = A 
and A2 = O. 

It should be noted that this procedure needs additional theoretical in­
vestigation. The same applies to the computational expenditure. When the 
existing disturbances are understood as external but unknown inputs, as 
written in Eqs. (3.0.1) and (3.0.2), then the filter (observer) can be designed 
so that these inputs are decoupled from system modifications [143, 144]. 
Consequently, the residual is robust against unknown inputs and only sen­
sitive to system modifications; this method is called a robust method. It 
is obvious that this procedure can also be used for failure isolation (each 
failure requires a filter). 

4.3.6 
ARMA Models 

Approximations of the governing differential equations by finite differences 
or the corresponding integral equations by numerical integration methods 
lead to algebraic equations. Knowledge of the method of approximation 
permits a physical interpretation of the parameters [139, 145]. Independent 
of these approximations, a system of algebraic equations can be assumed 
as a process model a priori. If the common notation in ARMA modelling 
is used, the symbols for the input and output quantities previously used 
in this book now deviate from the following ones; the model then reads 

Yk + an-lYk-1 + an-2Yk-2 + ... aOYk-n 

= bn-1Uk-l + bn- 2Uk-2 + ... + bOUk-n, ( 4.3.46) 

with Yk := y(tk), Uk := U(tk), tk = kh, h the time increment, k = 1, ... , n. 
In order to calculate Yb n previous values of the output and n previous 
values of the input (initial conditions) must be given. 

Equation (4.3.46) is called an ARMA model with the autoregressive 
CAR) part {Yi} and the moving average CMA) part {ud. The coefficients 
an-I, ... , ao and bn- I , ... , bo are constant for linear and time-invariant 
systems. 

The solution of Eq. (4.3.46) can be obtained by applying the z­
transform. With the shift operator q, 

i 
q Yk:= Yk+i, ( 4.3.47) 

Eq. (4.3.46) turns into the equation 

(qn + an_lqn-I + ... + aO)Yk = (bn_1qn-1 + bn_2qn-2 + ... + bo)ud4.3.48) 

By introducing the z-transforms 

( 4.3.49) 

with initial conditions equal to zero, one obtains 
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The transfer function immediately follows: 

(4.3.51) 

The solution of the homogeneous Eq. (4.3.46) is 

(4.3.52) 

with constants Ci and poles of the transfer functions Pi equal to the roots 
of the characteristic polynomial 

If the particular integral is designated by Yp(k), then the total solution of 
the linear model is 

Yk = y(k) = Yh(k) + Yp(k). ( 4.3.53) 

The reader can find a detailed discussion in [106], for example. The co­
efficients of the ARMA model can be estimated by the use of process 
measurements. The definition of residuals and the application of a chosen 
estimator lead to the required estimates (see, for example [69, 146]). This 
can be done in the time domain or the z-domain. The order determina­
tion requires special attention; here the reader is additionally referred to 
[147]. Several ARMA models permitted for vibrating systems with their 
orders are summarized in [148]. Order determination of ARMA models is 
crucial. Order estimation of AR and ARMA models can be done based on 
the system-balancing theory. The approach is balanced if it consists of the 
determination of state coordinates, when the system is controllable and 
observable in the same degree [149]. If some state variables are weakly 
controlled, and, at the same time, weakly observed, they can be reduced. 

As already mentioned, ARMA models represent time series; they are 
process models. As can be seen from Eq. (4.3.51), the AR part determines 
the poles of the model which are related to the eigenfrequencies of the sys­
tem which causes the process [106]. The solution (4.3.52) of the difference 
equation can be compared approximately with the solution of the corre­
sponding differential equation, which consists of the fundamental terms 
exp(oi + jWi)kh at the time kh with the time step h and its multiple. Com­
parison of the fundamental solutions pf and exp(oi + jWi)kh yields 

P. _ e(5 j+jwj)h 
1- . 

Distinction of the various possible cases of the poles by means of the In­
operation provides a first guess concerning the required eigenquantities. 
As can be imagined, it can be difficult to decide which eigenfrequencies 
are related to the object under consideration and which ones are caused by 
noise. But, consequently, the AR coefficients of the ARMA model contain 
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the information about the system modifications via the modified process 
(time series); they indicate possible damage. 

Another physical interpretation of these estimates needs further cal­
culation steps: backward transformation. This transformation can be per­
formed by calculating the eigenquantities (singular values and vectors) of 
the ARMA model, and by inserting them in a suitable way into the spectral 
decompositions of the parameter matrices of the assumed system model. 
This can be a difficult task, when one considers the possible incomplete­
ness of the eigenquantities and the possible physically non-interpretable 
modes due to the noisy data used for modal identification. Another method 
of physically interpreting the ARMA coefficients is given by the forward 
discretization of the equations of motion in the form of differential equa­
tions by pre-defined finite difference expressions, and integral equations 
by pre-given numerical integration methods [139, 145]. In addition to de­
terministic handling, a statistical criterion can be taken which results in a 
covariant equivalent formulation [150]. 

What is writtten above for a single input/single output (SISO) system 
can be written, of course, for a multi-input/multi-output (MIMO) system. 
For an n DOF model only the second order AR parts are necessary in 
order to determine the system quantities. The various types of modelling 
are illustrated in Fig. 4.5, following [151]. The abbreviation "X" stands for 
eXogeneous excitation. Lattice filters are digital filters which are based on 
ARMA models and realized by the ARMA z-transform transfer function 
H(z). The MA coefficients, however, determine the identification methods. 
The reader can find a summary of the possible models and identification 
methods in [152]. 

The 2n-th order MIMO state-space model corresponds to Eqs. (3.01, 
3.02) without the failure terms, 

i(t) = Ax(t) + Bu(t), 

yet) = Cx(t) + Du(t), 

where x(t) is 2n-dimensional, u(t) is i-dimensional, and yet) is m­
dimensional, and {A, B, C, D} are dimensioned compatibly. When the dis­
cretization methods mentioned above are followed, or when an intervalwise 
approximation of the forcing function is implied (e.g. by taking the av­
eraged sample value), the discrete time state-space model corresponding 
to the above continuous time formulation reads (it can be compared with 
Eq. (4.3.39» 

x(k) = AdX(k.- 1) + BdU(k - 1), 

y(k) = Cdx(k) + DdU(k - 1), 

(4.3.54) 

(4.3.55) 

where the matrices result dependent on the type of approximation, and 
the abbreviation 

u(k) = u(t), tE(kh, kh + h] (4.3.56) 
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Fig. 4.5. Time domain modelling of linear systems 

is used. In the above equations no distinction is made between the exact 
quantities x, y and their approximations. 

4.3.7 
Additional Methods 

No attempt is made to present a review of adjustment methods. Here the 
reader is referred to reviews and surveys in addition to the books on system 
identification already cited: [150] to [153]. But the reader's attention must 
be drawn to two methods that are interesting in adjustment: one method 
is interesting due to its closed form solution, and the other method is a 
real time identification method. 

It is assumed that m < n measured eigenfrequencies and natural modes 
are measured. The stiffness matrix adjustment problem is formulated as 

subject to 

mi? II M-l~2(KC - K)M- 1/ 2 IIF, } 
KCUo = MUoAo and KC = KcT • 

( 4.3.57) 
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The identified modal matrix Uo is an (n, m)-matrix, and the related matrix 
of eigenvalues Ao is a quadratic matrix of order m. The problem formulated 
in [154] has the closed-form solution given in [155]: 

The adjusted stiffness matrix is positive definite if the non-adjusted matrix 
is positive definite. However, if the non-adjusted matrix K has a sparse 
pattern, this will be lost in adjustment. As mentioned in SectAA.3, this 
sparsity can be included as prior information in the adjustment process by 
including it as a constraint. In [156] the case of the associated undamped 
matrix eigenvalue problem and the case of statics are dealt with taking into 
account missing measurements, this means with missing eigenquantities 
and reduced static measurements, respectively. The missing quantities, and 
to some extent the measured ones, are introduced as hidden functions of 
the structural parameters. Consequently, the Euclidean norm (equivalent 
to the LS) of the matrix to be minimized leads to a nonlinear system of 
equations with more than one (local) minimum. 

System identification methods can be classified as off-line and on-line 
methods. Among the on-line methods those are of particular interest which 
are real-time methods. Real-time identification methods are important 
when systems undergo degrading behaviour under large forces. In [157] 
state observers are applied for vibration monitoring and damage detection. 
Spectral decomposition and truncation of the higher modes are used in 
order to reduce the computational expenditure. Another real-time identi­
fication method is published in [158]. It is a time domain method based 
on a second order linear ODE with time-varying model parameters. The 
dynamic response of the model is obtained by application of the Newmark 
time-integration method. The LS method is applied for estimation of the 
physical model parameters (e.g. stiffness, damping). Since the current sys­
tem state is used for adjustment at each identification time instant, no 
identification error is accumulated. It has to be noted that the time identi­
fication interval must be short enough to capture the parameter variations 
in order to yield reliable estimates, and yet it must be long enough to 
allow necessary numerical computations. The demonstration is done with 
an MDOF model up to 3 DOF. For an n-DOF model, about 60n2 multipli­
cations and additions have to be made to estimate n model parameters at 
each time step. 

4.4 
Algorithms 

The adjustment procedures lead to linear and nonlinear algebraic equa­
tions in the parameters to be estimated. These systems of algebraic equa­
tions have to be solved while bearing in mind that the data used are 
erroneous. 
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4.4.1 
Linear Equation Solvers 

Equations linear in the parameters can advantageously be solved numeri­
cally by SVD 12 [159]. If the system matrix is designated by A, and assuming 
it is real, then the product AT A does not have to be calculated, and the 
number of digits needed to compute the solution of the normal equations 
with the same accuracy is half because it holds true [160] that 

1 ::::: condition number(A) 

= ..j condition number(AT A) ::::: condition number(AT A). 

As is already known, the mlmmum number of digits of the accu­
racy necessary for solving a system of linear equations is equal to 
log [condition number(A)]. 

One should choose a numerical algorithm which avoids the amplifi­
cation of the errors inhibited in the system of equations. For example, 
orthogonal triangularization combined with the QR-algorithm by the use 
of finite arithmetic (which serves as the regularization method by modify­
ing the mathematical operator, yielding an adjacent but stable solution, see 
Sect. 4.4.3) is a method of this kind [72, 69]. The QR method is expensive 
in computations (twice the number of computations as a direct solver of 
LS equations), but it is not sensitive to rounding errors. 

Once again, the interval arithmetic with the Gauss-Seidel algorithm 
applied to the input residual method [l36] is mentioned. This yields an 
enclosure of the solution. 

4.4.2 
Nonlinear Equation Solvers 

If the resulting system of equations is nonlinear in the parameters, then 
iterative methods have to be applied which are characterized by the choice 
of initial values, generation of the improved parameters and the choice of 
a termination criterion. The Newton-Raphson methods and their modifi­
cations, and also the gradient methods, are well-known. For these methods 
the choice of initial values dependent on the shape of the unknown loss 
function can be very difficult for the LS procedures when a large num­
ber of parameters have to be estimated. The convergence region of the 
iteration procedure can be very small. If insufficient prior knowledge of 
the values to be estimated exists, starting values for iteration have to be 
constructed. This can be done by methods that are linear in the parame­
ters (for instance, based on input residuals and subsystem modelling with 
approximated statistical weighting, as described in Sect. 4.2.3, or by taking 
the solution of the linearized system of equations as starting values). An­
other approach uses the EWLS in order to construct an iteration procedure 
that is always convergent [127, 5] (and see footnote 9 of this section). It 

12 Singular Value Decomposition 
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is a parameter perturbation method, starting with predominant weighting 
of the penalty term with the known solution e from system analysis (see 
Eq. (4.2.53)). Then the ratio of the weighting is modified in such a way that 
the solution of the previous iteration step serves as initial values within the 
convergence region of the iteration under computation. The convergence 
will be certain, but the solution can be a local minimum. 

Additionally, the Levenberg-Marquardt method should be mentioned 
as a combination of the Gauss -Newton and gradient methods. It con­
tains a parameter f in the form fl, which serves as a penalty term for 
regularization. 

Termination criteria are also part of regularization [71]. All the above 
methods behave well if the loss function has a sufficiently "smooth" sur­
face. If not, iteration procedures may fail, e.g. when parameter values are 
significantly changed after a particular iteration step, with an increase of 
the loss function. Appropriate provisions thus have to be installed into the 
iteration scheme to overcome such difficulties (e.g. in the above-mentioned 
case by repeatedly halving the step size). 

An interesting publication in this context is [161], which contains a 
discussion of estimators including numerical algorithms. 

4.4.3 
Role of Regularization 

Applications and theoretical investigations of large-scale models show that, 
in general, the resultant inverse problems are ill-posed in the definition by 
Hadamard [71]. He took the existence, uniqueness and stability of solu­
tions to be the characteristics of the well-posedness of problems. Spatially 
discretized problems are ill-conditioned. A well-known example is estima­
tion of the impulse response function by deconvolution. The application 
of regularization means the substitution of the solution operator by an 
adjacent operator to provide a unique and stable solution. A generalized 
solution based on a minimum norm requirement is unique with respect to 
the chosen minimum energy considerations (corresponding to the norm). 
Additional manipulation is then needed in order to obtain a stable solution. 
The modified operator can be obtained by taking additional information 
into account. This can be knowledge of mathematical properties (symme­
try, definiteness of matrices) and of system properties, such as connectivity, 
it also can concern prior results of reconstructed states, of standard devi­
ations of measurements and prior estimates, or of parameter sensitivities 
with respect to measurement errors [162] etc. The latter is the reduction 
of the measurement error effect by special weighting. This is performed 
by including the data sensitivity of the normal solution (LS-solution) with 
respect to the measuring errors [166]. The inverse problem is solved, for 
example, by applying the LS with the measured data, and then additionally 
known randomly varying errors are superimposed on the measurements 
and the problem is solved again. This sensitivity is determined in a similar 
way to the Monte Carlo method, using additional known randomly vary-
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ing errors which are superimposed on the already erroneous data, i.e. the 
weighting matrix is chosen as 

N 

Ge := s l)X(y) - x(y + 11) ][x(y) - x(y + 11) f, (4.4.1) 
i=l 

where y is the data vector, 11 the known random vector, and x denotes 
the normal solution. s is a scalar which, for instance, can be estimated by 
cross-validation. The improvement is described in [166]. Additional regu­
larization methods are discussed in the same thesis. Instead of measured 
values one can' extend the knowledge by the calculated (by the use of the 
validated model) dynamic responses of a changed mathematical model of 
system analysis; the changes can concern the boundary conditions [163] 
and the theoretically introduced "anti-resonances" [164]. An overview of 
regularization methods with some of the authors' own results is presented 
in [72]. A review of the literature is also given, and therefore only two 
methods are mentioned in some detail. It will be noted here that one can 
combine global with local residuals in order to enlarge the information 
content [165]. 

Bayesian approach. Normally distributed random variables for model pa­
rameters as well as for measurement errors lead to the EWLS (see 
Eqs. (4.2.53) to (4.2.56)). Here the possibility is given of regularizing the 
operator by the penalty term. 

Additionally, submodelling with the adjustment factors far fewer in 
number than the number of matrix elements to be estimated means the 
introduction of a coarser topology, which is also a type of regularization: 
the share of information content of the finite measurement data set that 
is related to each single parameter is enlarged when the total number of 
the parameters is diminished, which means that the number of equations 
is now greater and the number of parameters is smaller than before. 

As already mentioned, statistical weighting by Ge can be a problem. The 
Tikhonov-Phillips procedure can be applied as a deterministic alternative 
to this. 

Tikhonov-Phillips procedure. If one changes the parameters to be estimated 
from a to ~a := a - e, then the prior knowledge for ~a is the zero vector O. 
By substituting the weighting matrix Ge of the penalty term in Eq. (4.2.54) 
by ')'2yTy with a pre-given matrix Y, the problem is reduced to deter­
mining the regularization parameter ')'. This can be done a priori under 
specified circumstances [71, 70], or a posteriori by cross-validation [128]. 
The additional expenditure is not negligible, but examples show that the 
expense is almost justified [165, 166]. 
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4.5 
Practical Hints 

The essential statements have already been made with regard to subsys­
tems modelling and prior knowledge, so that only general comments on 
mathematical handling and experience will be made here. The adjustment 
procedures also have to be seen in the context that the order of the initial 
mathematical model (number of DOF) is unequal to the number of mea­
suring points. Additionally, the inputs often cannot be measured while the 
outputs are known. 

4.5.1 
General 

In parametric identification the mathematical model is the starting point, 
and it is a very important subject. The model structure must be adequate to 
the problem, which means, for example, that if the load configuration of the 
system has changed a check must be made to determine whether the model 
structure is still valid, because the energy intensity fluxs can have changed 
etc. (change of the physical model [5] and see Fig. 1.3 and Sect. 2.1.4). Any 
error in the model structure affects the parameter estimates in the sense 
that they become biased. Spatial discretization (e.g. by finite elements) 
generally influences the structure as well as the parameter values. Therefore 
the discretization error has to be taken into account, and here, especially, 
the error in the model structure (including connectivity), while with an 
adequate model structure the statistical parameter error will be reduced by 
the estimators. The modelling of boundary conditions is already included 
in this discussion when one thinks of the flexibility formulation. 

The choice of parameters to be estimated is most important for con­
tinuous models as well as for discrete (with respect to the spatial coordi­
nates) ones. Error 10calization13 [167] can be done deterministically and 
statistically and needs a lot of information, including the fact that the 
measurements are incomplete and erroneous. Here prior knowledge and 
regularization again playa major role. 

Parameter sensitivity helps one to find out the parameters influenced 
mainly by the measurements. In addition, measurement error sensitivity 
[162], [166, 168] helps one to choose those parameters which are affected 
most by measurement errors and should therefore be emphasized less or 
eliminated in the estimation. As can already be seen, the user can formulate 
the problem at the beginning (e.g. by parameter choice) in a well-posed 
manner. 

Parameter reduction has already been mentioned in connection with 
the sensitivity investigations. Another approach is parameter topology by 
submodel formulation, also already discussed. 

13 Here, of course, error localization is identical with the localization of model modifications, 
whereby the models describe different state conditions dependent on life times. 
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With regard to the convergence of iterative procedures, the idea is to 
reduce the number of estimates during iteration. Multi-level estimation can 
be performed sequentially with subsets of the parameters [169]. Another 
procedure is adaptive testing based on selective sensitivity with respect to 
particular parameters or a subset of parameters [170, 171]. These latter 
methods mentioned here are parts of the regularization methods, because 
they reduce the number of equations to be solved and diminish the re­
spective condition numbers. 

The adjustment methods discussed work well for a number of J < 100 
of parameters to be estimated and with n < 103 if 
1. all the information needed is contained in the measured data set in 

a non-negligible manner, for example the DOF affected by the system 
modifications 

2. the structure of the (prior bandlimited) mathematical model is equiv­
alent to the system behaviour 

3. the parametrization is chosen "suitably" (for which several tools are 
provided) 

4. as much information as possible is used (e.g. prior knowledge) 
5. in the case of the application of the (E)WLS statistically based weighting 

is used (in order to reduce the random error correlation and therefore 
the resulting bias) 

6. a stable algorithm is used (in order to avoid amplified error propaga­
tion) 

7. regularization methods are applied in the case of ill-conditioning. 

4.5.2 
Incomplete Measurements 

Incomplete measurements are a severe problem. They affect the identi­
fication possibilities (methods) as well as the quality of the parameter 
estimates. 

Missing measuring points. Missing measurements are, for example, ex­
pressed by Eq. (4.3.43). They can be substituted by simulation with the 
prior validated mathematical model, as already mentioned a number of 
times. Additionally, they can be estimated together with the parameters 
(Kalman filter, see Sect. 4.2.4). Missing dynamic responses can also be 
reconstructed (see Sect. 4.3.5 on state observers). At least missing com­
ponents can be accepted by the use of the measuring equation within the 
EWLS, instead of using all the components of the related output and/or 
input vectors in the corresponding residuals: the sums of the loss functions 
are built up using fewer terms. 

Non-measurable input quantities. The use of available modal data avoids 
this problem. For example, signal processing can easily result in identified 
eigenfrequencies. 

The excitation of some operating systems can be assumed as random 
with constant spectral power density within a frequency band, and there-
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fore white noise excitation can be provided with a variance that is also to 
be estimated in addition to the parameters. 

At least, if the input can be parametrized, these input parameters can 
then be estimated simultaneously with the other parameters of the model, 
as is done in [172]. 

4.5.3 
The Use of Order-Reduced Models 

Another problem which has to be mentioned here is the reduction of the 
order of the discretized model itself. The incomplete modal transformation 
can be emphasized, which is advantageous in addition to other properties, 
because it does not change the parameter set to be estimated [68, 135]. The 
parameters are defined for the non-reduced model, and estimated within 
the reduced model. Therefore they can be applied to the total model, but 
one has to prove whether they also update the total model (dependent on 
the information, the frequency contents of the measurements, the chosen 
parametrization). Various types of reduction transformations and the in­
complete measurements and their errors including the parametrization are 
discussed in [173] and [68]. This means that the measuring matrix Hand 
the control matrix have to be taken into account in addition to the error 
models. The main results to be taken into account here are 
• that the submodel parametrization has to fulfil special requirements 

with the application of the frequency-independent incomplete modal 
transform (fewer eigenvectors than the number of DOF of the prior 
model, however, complete within the band-limitation) with m < n mea­
suring points, and 

• that the reduced mathematical model means a loss of information. 

The n' < n primary (essential) eigenvectors of the associated undamped 
model are determined by the band-limitation, and they will yield a rela­
tively complete decomposition of the dynamic response due to the related 
band-limited excitation. In the image domain the transformation l4 reads 

U(s) = TQ(s), (4.5.1) 

with the vector of generalized coordinates Q(s). The constant transfor­
mation matrix T can be, for example, the incomplete modal matrix (rop. 
Further transforms are contained in [135]. With the complete prior modal 
matrix 

(4.5.2) 

(the index p stands for primary coordinates and s for secondary coor­
dinates) the summand matrices have to fulfil additional conditions. Oth­
erwise the estimates of the correction factors may be biased, though the 

14 It can also be performed in the time domain. 
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reducing modal transformations used are exact for simulation purposes. 
The (rather restrictive) conditions 

o for (T = l(1)S, } 
o for p = l(l)R, 
o for L = 1(1)! 

are sufficient to prevent biased estimates. 
The necessary conditions (4.3.3) now change [681 to 

A A T 
rank {(Uop ® Uop ) [csM1, ••• , csMs1 

A A T 
rank {(Uop ® Uop ) [csB 1, ••• , csBR1 

A A T 
rank {(Uop ® Uop ) [csK1, ••• , csKl1 

=S 
=R 
=! 

where ® denotes the Kronecker product. 

4.6 
Use of the Knowledge Base for Diagnosis 

< 
< 
< 

(4.5.3) 

(4.5.4) 

The far-reaching information now available is the validated mathematical 
model for every past life time required. If the measured data used also con­
tain sufficient information on the system condition, and if the estimation 
performed approximates the required expectation well, then the errors of 
the validated mathematical model are not only known, but they are also 
sufficiently small (usability of the model). 

The estimated variances and covariances of the estimates are thus first 
given for the recommended EWLS. They serve for checking the usability, 
and secondly, as is discussed in the next chapter, for decision-making: the 
test of the significance of model modifications (on time 0i compared with 
the model for time OJ, j < i). Diagnosis is then performed by the use of 
reliable and usable static and dynamic models. 

4.6.1 
Parameter Errors: Covariance Matrix and Confidence Regions 

The EWLS is recommended. The reasons for this recommendation can be 
found in Sects. 4.2.4 and 4.4.3. We will mainly follow [1741 for determi­
nation of the covariance matrix. Additional information can be obtained 
elsewhere, for example in [1261. 

Using the Bayesian estimator as described in Sect. 4.2.4, one gains a 
posteriori the most probable parameter values a for estimates that mini­
mize the loss functional Eq. (4.2.52). Taking the Taylor series expansion 
:h(a) for parameter values a not too far from a, one thus obtains 
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as a second order approximation. Ha is the Hessian matrix (4.2.55) taken 
for the estimates a. Hence, assuming an a posteriori normal pdf for the 
parameters (as random variables) one can take approximately 

(4.6.1) 

(4.6.1) is a conditional normal pdf with mean E{a} = a and covariance 
matrix 

[ o:h(a) I ]-1 cov{a} = Hal = --T + Ge 
oaoa a=! 

(4.6.2) 

If (4.6.1) is applicable, the quadratic form 

Q(a) = (a - alHa(a - a) 

is distributed as X2 with J degrees of freedom (J the total number of 
parameter estimates). For the parameter values a to be a posteriori with 
probability y within the region (y-confidence region) Q(a) ~ c one obtains 

P[Q(a) == (a - a)THa(a - a) ~ c] = y, ( 4.6.3) 

with y = P(x2 1J) Ix'=c from the X2-distribution with J degrees of freedom. 
For a pre-given y (posterior probability), the confidence regions for 

each single parameter (as a random variable) can be estimated by 

(4.6.4) 

where 

dar := J c , r = 1(1)]. 
(Ha)r.r 

(4.6.5) 

From Eq. (4.6.2) one can obtain the associated correlation matrix for 
the parameters. The statistical correlation between the parameters ar and 
as is given by the correlation coefficient 

(4.6.6) 

Here the diagonal elements of the inverse Hessian matrix are obviously 
taken for the variances of the parameters. 

When applying the formulas above, one should take into account that 
the inverse Hessian matrix is in general only a lower bound for the co­
variance matrix (Rao-Cramer inequality) [126]. 

In a similar manner one can estimate the variances of the parameter 
estimates [126] by taking into account several different measurement data 
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sets (samples) for the parameter estimation. For the covariance matrix 
of the parameter estimates, with the usual assumptions concerning the 
measuring errors [126, 174] one obtains 

V - {A} _ H- 1 [aj 2 (a) I ] H- 1 
il - CDV a - il a a Til' 

a a a=a 
(4.6.7) 

If the influence of the weighting matrix Ge on the (at least asymptotically 
unbiased) parameter estimates Ii is negligible, and assuming that the sam­
pling distribution is (approximately) normal, one can also estimate confi­
dence intervals for the distances between the parameter estimates and the 
true values like (4.6.3) [126, 174]. (If the sampling distribution cannot be 
assumed to be normal, the confidence intervals have to be estimated by 
means of Chebychev's inequality.) 

4.6.2 
Dynamic Models 

The resulting mathematical model dependent on a discrete life time (h = 
const. serves for the simulation and prediction of dynamic quantities in­
cluding symptoms of condition. These results serve for the studies of causes 
of possible faults and therefore are the basis for diagnosis. The deviations 
resulting from the comparison of the corresponding quantities of the previ­
ous mathematical models with the recently adjusted mathematical model, 
together with the damage catalogue and the quantities which lead to it, 
serve for assessment purposes. The significance of the resulting deviations 
in the model and the derived quantities, and the severity of the located 
faults resulting from assessment then lead to a decision as mentioned in 
the Introduction and described in Chap. 4. 

Fig. 3.1 describes the knowledge flow schematically. It is noted that the 
loading may have changed during the life time. The causes can be due 
to modified forces. This fact is also shown in Fig. 3.1. If necessary, weak 
point analysis, sensitivity studies etc. have to be revised. 

4.6.3 
Static Models 

As already mentioned, if, for example, dependent on the problem under 
consideration, stress distributions with their maximum values are decisive, 
then an additional static model has to be included in the investigation. An 
interface to the static model (FE program) should therefore be provided 
in the knowledge-based system (program). 

Often it is unnecessary to correct the total static model. This is the case 
if local damage has to be considered. The corresponding submodel must 
be corrected in detail while the remaining model may be corrected glob­
ally if necessary. The advantage is obvious: only a few measurements are 
necessary and the expenditure is relatively small. This procedure, however, 
must be developed and checked in each particular case. 
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4.6.4 
Trend 

4. Model-Supported Diagnostics Via Parameter Estimation 

After some applications of model-supported diagnostics, several life time­
dependent adjusted mathematical models .M(8i ), i = l(l)N], are available 
which permit the performance of a trend analysis by establishing .M(8N1 +d. 
This means that a fault, or damage evolution model, can be obtained in 
addition. Regression analysis combined with extrapolation can be used. If 
a sufficiently large number of measurements are available, some type of 
pdfs can be introduced. The prior knowledge has to be taken into account, 
of course. This subject is discussed in Sect. 2.3. In brief, except when rapid 
changes occur in the characteristics, the Weibull, Frechet, and Pareto type 
models are suitable methods for trend prediction (model of evolution), 
and for calculating the shape coefficient 'Y as illustrated in Fig. 2.24 and 
given in Eq. (2.3.27). The trend of the parameters can be calculated with 
Eq. (2.3.30), and the symptom trend by (2.3.60) for periodic observations. 
The results allow the user inspection on request, instead of uneconomical 
continuous or periodical inspection. 

As already mentioned, the model-based procedures can be understood 
and formulated as self-learning. One approach is to formulate them re­
cursively. One part of self-learning is the adjustment, the second part of 
self-learning is the trend prediction based on performing .M(8N1 +d. 

4.7 
Summary 

Model supported diagnosis is based on model adjustment via parameter 
estimation. This means that the model describing the previous state con­
dition is corrected in such a way that the recent state condition will now 
be represented. Systematic measurement errors have to be avoided or de­
tected and removed. Irregular measurement errors are modelled stochasti­
cally. Then estimators have to be applied in order to obtain the corrected, 
adjusted parameter values including their covariances. 

This part of system identification is described with its application to di­
agnosis. It is emphasized that prior knowledge is essential in order to deal 
with a parameter estimation problem with a minimum number of param­
eters to be estimated. Submodelling and the application of the extended 
weighted least squares is recommended. Additionally, practical hints are 
given (algorithms, regularization, measurements, various models) for ob­
taining success in adjustment. 

The associated problem of connectivity, which is under research, is not 
discussed explicitly. On one hand, it concerns the mathematical properties 
of the related matrices including their minors [175, 176] for reconstruc­
tion, and on the other hand - excluding connectivity identification - it 
concerns the preservation of the connectivities in the model during param­
eter estimation. This is not evident, since, for example in FE-modelling, 
the parameter matrices are a priori summands of element matrices, and 
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estimation in the LS sense will smear various physical effects dependent 
on the quality criterion (residuals) used. 

In the last section preparations are made for the use of the resulting 
knowledge base. This concerns the errors of the estimates, the ability and 
use of the dynamic and static models, and trend prediction. 
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CHAPTER 5 

Decision, Assessment, and System Modification Procedures 

Again Fig. 3.1 is the starting point. Therefore it is repeated here as Fig. 5.1, 
and the decision problems are outlined in bold type. As can be seen from 
the decision diamonds, four types of decisions have to be made: 
1. the first type of decision is concerned with the weak point observa­

tions by deciding whether certain pre-given thresholds are exceeded by 
observed symptoms, 

2. the second type of decision is based on the significance test of changes 
with respect to particular values of symptoms as functions of life time, 

3. the third type of decision problem consists of the significance test of 
changes of parameter estimates. Model structure modifications are ob­
viously significant, and 

4. the fourth type of decision concerning action required has to be made 
under risk, dependent on the previous assessment. 

Rapoport [1771 distinguished the following types of decision: 
• decisions under uncertainty 
• decisions under risk, and 
• multi-objective decisions. 

Decisions under uncertainty, if modelled probabilistically, are character­
ized by the unknown relative likelihoods with which the various states 
of nature are obtained at the time. Additionally, a finite number of al­
ternatives are given which are the basis of the outcome of the decision 
as a course of action among these alternatives. However, the adjusted 
mathematical model with its estimates also gives the information on the 
covariances of the estimates. Consequently, significance tests taking into 
account confidence intervals can be performed. Additionally, the dynamic 
responses (for example accelerations, stresses) can be calculated with the 
corresponding errors. 

Decisions under risk require the knowledge of pdfs: a clear formula­
tion of the sample space with the a priori probability. The decision tree 
for sequential decisions under probable information is well known. Deci­
sions and actions also are taken under unequality; this means that different 
beneficiaries have to be taken into account, and that, in addition to the in­
tended consequences, previously unknown and not intended consequences 
often appear. Risk here is defined as the product of the damage measure 
and the probability of the occurrence of the damage. 

Multi-objective decision: if multi-objective criteria of values are given, 
the preference relation is sought. It follows an estimation (optimization) 
procedure. 
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These topics are briefly introduced in the following. Instead of a deep 
and broad discussion of decision-making, the tools will be provided for 
our purposes, and some illustrations of their use will be given. Finally, the 
application of fuzzy logic in decision-making will be mentioned. 

One action resulting from decision-making may be to modify the sys­
tem. Design engineers generally know where and how to change the con­
struction with respect to the requirements. But these requirements have 
to be formulated, and within model-based diagnosis there exist a powerful 
knowledge base which, of course, should be used for the purpose of system 
modification. Consequently, modification procedures are discussed at the 
end. 

5.1 
Fundamentals of Decision 

The testing of hypotheses is the basis of decision-making. The simplest 
way is to test the exceedance of a threshold. The threshold can be chosen 
(problem-dependent) deterministically or statistically (e.g. multiples of a 
standard deviation). If statistical hypotheses have to be tested, we ask for 
the significance level. The application of fuzzy logic also results in a mea­
sure which serves the purpose of decision-making. The reader is reminded 
that decision-making concerns, or is based on, significant deviations of 
chosen features (scalar or vector) from their previous values. Within pa­
rameter estimation significant modifications of the estimates dependent 
on the life time are connected with confidence intervals and permissible 
deviations. 

5.1.1 
Pseudo-deterministic Decision 

In addition to the remarks made in the Introduction we must remember 
that the features we consider consist of symptoms S(O), i.e. quantities sensi­
tive to expected failures. We also have to take into account alert-thresholds: 
thresholds which may be tolerated, as well as those which cannot be tol­
erated [178]. Economic and safety thresholds cannot be forgotten. The 
sensitivity of the symptoms is decisive for various early warning-times. 
This will be demonstrated in Sect. 5.2. 

Theoretical studies, for example, can result in a fault classification 
(Fig. 5.2). This shows the concept of a test using two symptoms. First 
a check has to be made as to where the point is located (area). If it lies 
outside the healthy area (allowable range) it has to be classified (fault 1 
or fault 2). Generally, the centre of gravity points of the related sets are 
computed and compared with the corresponding points of simulated, his­
torical failure data or previous data. Distances then serve as a basis for 
decision. 

Another measure has already been introduced: it is the local and global 
damage measure defined in Sect. 2.3.2. 
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Fig. S.l. Flow-chart of model-supported diagnosis emphasizing the decision problem included 

The health index [179] is a very simple measure. It is defined as the sum 
of the squares of residuals, each consisting of a current parameter value 
und its nominal value, and divided by a corresponding warning deviation 
of the related parameter. It is a quadratic loss function (global) measure 
which emphasizes large deviations: 

(5.1.1) 
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gi is a suitably (with respect to critical symptoms) chosen weighting. As 
can be seen, hi and/or h can be plotted against life time, and its limit value 
can also be assessed. 
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Fig. S.2. Fault classification 

5.1.2 
Bayesian Decision Theory 

The following discussion is close to that given in [180]. One measure of 
the performance of a decision is the probability of making an incorrect de­
cision; this is also called the probability of error. We will follow a heuristic 
approach. Measured features are designated by yn. They can be symptoms 
(e.g. dynamic responses) assembled in a vector. The feature classes are 
denoted by Wj, i = 1,2, ... , nw. They are defining assumed hypotheses. We 
will restrict ourselves to two hypotheses: good and faulty conditions. They 
will be designated by WI = We and Wz = Wp. The measured vector yn has 
to be classified. The posterior probability of each class is p(wdym). For the 
two classes chosen, the decision rule using Bayes rule (see footnote 7 in 
Chap. 4) is defined as 

> 
else 

Pylwf (y"'IWf )P(Wf) 
py(ym) choose We, 

choose Wp. 
(5.1.2) 

The weighting of the posteriori conditional pdfs is done with the prior 
probabilities P(Wj). Consequently, the decision rule can be formulated as 
the likelihood ratio 

> 

< 

choose We, 

choose Wp. 
(5.1.3) 

The equality sign which defines the decision boundary can be chosen de­
pendent on the problem for the one class or the other (hypothesis), 
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The following example is given to clarify the meaning of this ratio test. 
A scalar symptom measurement Sm at a pre-given time () of the symptom 
S has the conditional pdfs 

P (Smlw) = _I_e(sm_ 3)2/2 
SlwG G ~ , 

P (Sml w ) = _I_e(sm_W/2 
SIWF p ~ • 

The densities are shown in Fig. 5.3. In addition, we assume that the two 
classes are equally likely: 
P(wG) = P(wp) = 1/2. Then Eq. (5.1.3) gives 

> 1, choose WG, 

< 1, choose Wp. 

The decision can be simplified by taking the In-operation: 

> 0, choose Wp, 

< 0, choose WG. 

The symptom limit value is SI = 6, and the decision rule gives (see Fig. 5.3) 

> 6, choose Wp, 

< 6, choose WG. 

In the example a symmetrically located intersection point SI = 6 exists 
which is the case when the prior probabilities are equal. Generally, the 
intersection as the decision boundary is defined by the equality of the 
weighted class conditional pdfs of Eq. (5.1.2): 

(5.1.4) 
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The performance of a decision rule can be measured by its probability 
of error e: although the measurements yn require the choice of, for ex­
ample, WG, the other region is chosen due to calculation (with uncertain 
measurements). Various formulations can be chosen for the error proba­
bility: 

P(e) = 1: P(ely)py(y)dy, (5.1.5) 

or 

(5.1.6) 

The probabilities of error for each class are 

ei := P(eIWi), {l, 2} = {G, F}. (5.1.7) 

For the two classes considered they are defined as 

eG := P(elwG) = P(choose wplwG) = r PylwG(ylwG)dy, (5.1.8) 
lRF 

ep := P(elwp) = P(choose wGlwp) = r PyIWF(ylwp)dy. (5.1.9) 
lRG 

In the example it holds true: for the symptom y = S€( -00,00) and the 
limit value S/: wG€( -00, S/), Wp€(S/, 00). It follows 

P(e) eGP(wG) + epP(wp) (5.1.10) 

P(wG) r PylwG(ylwG)dy + P(wp) r PyIWF(ylwp)dy. 
lRF lRG 

The class error probabilities of the previous example are shaded in 
Fig. 5.3. 

It can be shown that these decision rules are optimum in the sense of 
minimizing the error probability or quantities related to them. For this 
purpose it is useful to introduce costs (cost functionals, loss functionals). 
The cost is denoted by Jij if it is decided on Wi when yn is actually from 
Wj, i =P j. The cost deriving from an incorrect decision is assumed to be 
greater than that of making a correct decision, 

(5.1.11) 

The Bayes risk ~ is defined as the expectation of the total cost, consisting of 
the sum of the weighted costs, where the weightings are the probabilities of 
deciding Wi and y from Wj. With the abbreviations introduced previously, 
mathematical manipulations lead to 
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qJt = P(WG)]GG + P(Wp)fpp + P(WG)(fpG - lGG)CG + P(Wp)(JGP - fpp)cp. 

(5.1.12) 

Binary costs, 

{ 0 if i = }', 
Iij = 1 if i # j, (5.1.13) 

lead to (5.1.11) [180] by setting qJt = P(c). 

5.1.3 
Neyman-Pearson Rule 

One of the class error probabilities is fixed within this rule. However, start­
ing with the Bayes risk mentioned in the previous section, minimization 
of the error probability again yields the likelihood ratio test for hypothesis 
testing. 

Let us assume that 

(5.1.14) 

holds true. The value c is the probability of observing a point y within 
the class WG, assuming that the hypothesis concerned is true. With c the 
second error probability CG will be minimized: 

CG = r PyIWG(y!wG)dy. 
JRF 

(5.1.15) 

The minimization of CG, for example, means minimizing the number of 
breakdowns of a system (decision GOOD when the system is getting near to 
becoming FAULTY). The minimization of (5.1.15) subject to the constraint 
(5.1.14) is equivalent to minimizing 

IE = CG + A(cp - c), (5.1.16) 

where A is the Lagrange multiplier. Substitution of the related integrals 
(5.1.15) and (5.1.14), taking into account 

r Pylw;Cy!Wi)dy + r PyIWi(y!wady = 1, 
JRG JRF 

leads to the minimization of an integral with the integrand 

g(y) = APylwF(y!Wp) - PylwG(y!wG). 

Consequently, for the minimization of the integral the region RJ must be 
defined where g(y) is negative. The decision rule 

ley"') = PylwG(y!wG) { > . A for y€RG 
PyIWF(y!Wp) < A for y€R p 

(5.1.17) 
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then follows. The determination of A, which is called the threshold of the 
decision, can be done as follows: the ratio (5.1.17) is a function of the 
random variable y, and consequently I(y) is a random variable. The deci­
sion regions R1,2 in the y-space are mapped into the intervals (A, 00) and 
(-00, A) in the I-space, respectively. The condition (5.1.14) can therefore 
be written in the form 

(5.1.18) 

This is an implicit equation in I. 
Comparison of (5.1.17) with the likelihood ratio (5.1.3) shows the es­

sential difference between the two rules. The Neyman-Pearson rule uses 
the probability c based on the error probabilities rather than the class 
probabilities. 

Only the probability P(wc) and an approximation of the pdf PSjwG(5Iwc) 
= pc(5) are available for symptom condition monitoring. It is thus impos­
sible to calculate the risk function (5.1.12) due to a lack of information. 
Taking into account the decision error (5.1.10), we can minimize the prob­
ability of the system's breakdown, 

(5.1.19) 

which means that the limit value 51 should be chosen so as to fulfil 
Eq. (5.1.19). This requirement means we will "pay for it" when stopping 
and repairing, even if the system is in a GOOD condition. So we allow our­
selves to commit the error of the wrong classification of a GOOD condition 
as being FAULTY on a probability level A. It is 

(5.1.20) 

Transforming this equation in the previous simplified notation (see 
Sect. 2.3.5 and Fig. 5.4) for the symptom 5 and the symptom limit value 
51> it follows 

A = G roo pc(5)d5, 
lSI (5.1.21) 

where A is the allowable probability of needless repair, G is the availability 
of the systems in operation/service, and pc (S) is the pdf with respect to the 
GOOD condition. It must be remembered that the above integral is nothing 
other than the previously defined symptom reliability (see Eq. (2.3.44)): 

R(S) = is Pc(s)ds, 
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I 
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Fig. 5.4. Illustration of Neyman-Pearson rule for vibration condition monitoring 
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with s the dummy variable for S. Hence, the final relationship for the 
symptom limit value calculation is (see Eq. (2.3.55)) 

(5.1.22) 

In diagnostics [24, 95] the probability of a wrong classification of a GOOD 
condition is usually fixed at some low level, for example A = 0.05. It means 
that one is ready to pay for needless repairs to 5% of the machinery stock 
when a wrong assessment is made, in order not to permit the breakdown 
of a system in operation. The allowable probability of wrong classification 
A is illustrated in Fig. 5.4 as the tail of the shown probability density of a 
GOOD condition PG(S). 

5.1.4 
Fuzzy Logic and Decision 

Fuzzy sets can be useful in making these decisions, because very often 
the probability information is not available. Then the membership of, for 
example, symptoms has to be considered. As examples, the recent papers 
[18] and [19] are briefly reviewed here. 

Frank [18] discussed the roles of the following four parts of a 
knowledge-based observer: 
1. Qualitative Model - a mathematical model for the determination of the 

expected behaviour. 
2. Discrepancy Detector - a procedure for the determination of the dis­

crepancy between measured and calculated symptoms using quadruple 
membership functions. 

3. Candidate Generator - a catalogue to suggest the fault candidate on the 
basis of discrepancies. 
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1 

B 
G 

[bl, b2 , b3 , b 4 ,] 

[g, g, 0, 0,] 

J.lB (1) 

I 
I 
I 
I 

(2) 

I 
I 

~ CALCULATED STATES 
~ MEASURED STATES 

(3) (4) 

a ,..----- -..,.. 

0 

I I 
I I 
I I 
I I 
I I 

+-r-+ 
b3 b l b4 

G INTERSECTS WITH B 

(1) IF g ~ [bI, b2 ,] ~ THEN G & B ARE "MATCHED" 

(2) IF g ~ [b2 , b2 + b 4 (1-a)], a ~ 0.5, THEN "MATCHED" 
(3) IF g ~ [b2 +b4 (1-a), b2 + b 4 ], a < 0.5, THEN 

g-(b2 + b 4 (1-a» = TYPE I DISCREPANCY 

(4) IF G DOES NOT INTERSECT WITH B, THEN 
g-(b 2 + b4 (1-a» = TYPE II DISCREPANCY 

SIMILARLY FOR g < hl 

Fig. 5.5. Decision-making strategy (following Frank 1994) 

4. Diagnostic Strategist - an algorithm to coordinate the entire integrative 
search process in order to ensure that the mathematical model matches 
the time evolution of the symptoms of the actual process. 
The observed/calculated residual symptoms are fuzzified through the 

use of the appropriate membership functions. A rule-based inference 
engine was used to obtain results, which were then defuzzified. In the 
decision-making strategy, a quadruple membership function as shown in 
Fig. 5.5 is used in [18]. In addition, an adaptive threshold using fuzzy rela­
tions is recommended in order to minimize the occurrence of false alarms. 

Isermann [19] suggested calculating the mean Si and standard devi­
ation i'Ti of the symptoms Si(t)] as reference values prior to the occur­
rence of any fault. After a fault appears, any changes in Si in the form of 
tl.Si = E{Si(t) - Sd , tl.ui = E{Ui(t) - i'Td can be evaluated using fuzzy sets, 
as shown in Fig. 5.6. In this particular example, fuzzy sets representing 
large decrease, small decrease, normal, small increase, and large increase 

1 The symptoms are measured at a fixed life time OJ; consequently the notation is Si(Oj, t). 

The first argument is suppressed in the following. 
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Il(S} 

small increase 
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large increase 

~ 

IS- : observed s Si _ 1 

I i-----l 
2 or 4 (Ji 

I 

.. i • - LlSi _ + LlSi 

III (S;) = max [min (~', ~)] I 
Fig. 5.6. Evaluation of observed symptom (following Isermann 1994) 
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are used to determine whether the observed Si has changed. He also used 
a fault tree with iterative forward and backward chaining in order to de­
termine faults. 

The theory of fuzzy sets has been well developed during the past three 
decades (e.g. see [181, 16]). Fuzzy rules and their applications are sum­
marized in the following. 

Consider the following sample rules, 
IF Set) is Aj and ~S(t) is BI, THEN L(t) is Cj.l. 
IF Set) is Aj+l and ~S(t) is BI, THEN L(t) is Cj+1,1. 
IF Set) is Aj+l and ~S(t) is BI+l> THEN L(t) is Cj+!,/+l' 
IF Set) is Aj and ~S(t) is BI+!, THEN L(t) is Cj.l+1' 

Membership functions for Aj,Aj+l,BI,BI+l> Cj.l,Cj+l,I,Cj,l+l,Cj+U+l 
are illustrated in Fig. 5.7. We can find the membership function Cik by 
using the following formula: 

11 11 
1 1 -....\~ 

\ 
\ 

0 
s(t) 

0 \ 
LlS(t) 

11 Cj,1 C j+1,1 Cj,l+l Cj+l,l+l 

1 

Fig. 5.7. Membership function for fuzzy rules 
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/-Le(S) = max {min[min(/-LAo (S(t), /-LBu (as(t)) , /-Leou (S)]). (5.1.23) 
jj=j,j+I,ll=i,i+l)) ))0 

In addition to the min/max operations, the other fundamental t-norms 
as listed in the following equation may be used: 

{ 
min(a, b), 
a·b 

ts(a, b) = max(O, a + b - 1), 
logs[l + (sa - l)(Sb - l)/(S - 1)], 

if S = 0 
if S = 1 
if S = 00 

otherwise. 

(5.1.24) 

The defuzzification process can use either the moment of the maximum 
method or the centroid of the area method. 

A simple example may serve for illustration. The structural reliability 
function [182], R(O), is defined as the probability of the event that the 
useful life 0 is at least 

R(O) == P(Ob > 0). (5.1.25) 

It can also be expressed in terms of symptoms as follows (see Eqs. 
(2.3.38) and (3.3.42»: 

RSb (Sm) == P(Sb > Sm) = ('0 PSb (S)dS, 1sm (5.1.26) 

where Sb is a random variable denoting the symptom limit state of the 
system, and sm is an observed symptom. The pdf used in Eq. (5.1.26) will 
be equal to the pdf in Eq. (5.1.22) if the symptom readings taken for the 
elaboration of PSb (S) are only from systems in operation. 

When there are several types of symptoms, assuming that distributions 
of their respective limit states are available, we may calculate reliabili­
ties Ri based on the symptom of type i, i = 1, ... , n. Different symptoms 
describe different faults. Consequently, the reliabilities generally have dif­
ferent values. A decision can then be made on the basis of these reliability 
measures. Frequently, however, sufficient statistical data are not available 
for the construction of probability density functions PSb (S). In such cases, 
the fuzzy rules may be applied as illustrated in the following example. 

Consider membership functions for Al (S(t) Small), A2 (S(t) Large), 
BI (No change in Set)), B2 (Increase in S(t), ell (Good condition), el2 
(Caution), e2l (Poor), and e22 (Failure), where Set) denotes a symptom 
measure at time t. Suppose that Set) is found to be 0.54Sm ax> such that 
/-LAI (0.54Smax) = 0.8, and /-LA2 (O.54Smax) = 0.2. In addition, as(t) is found 
to be 0.035Smax> such that /-LBI (0.035Smax) = 0.3, /-LB2 (0.035Smax) = 0.7. 
Using min/max operations (S = 0 in ts as given in Eq. 5.1.24, we find that 
ell = 0.3, el2 = 0.7, e2l = 0.2, e22 = 0.2 as listed in Table 5.1, in which 
results are given for several other values of S in the ts calculations. For this 
particular example (Fig. 5.8), the finally assessed condition of this system 
is 'caution' using various t-norms because the calculated reliability values 
R] (using moment of maximum method) and RIJ (using centroid of area 
method) range from 0.546 to 0.624. 
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Table 5.1. Calculations for the reliability and condition assessment example 

5=0 5=1 5=e 5 = 10 5 = 00 

ell 0.300 0.240 0.223 0.201 0.100 
el2 0.700 0.560 0.544 0.527 0.500 
eZI 0.200 0.006 0.044 0.027 0.000 
C22 0.200 0.140 0.123 0.101 0.000 
Rr 0.546 0.582 0.590 0.602 0.658 
RII 0.570 0.590 0.592 0.591 0.624 

Notes: Rr is calculated by using the moment of maximum (MOM) method. 
RII is calculated by using the centroid of area (COA) method. 

\..I 
A1: Small 

1 
0.8- ~---

0.2 
0 

\..I 
1 

0.7 

0.3 

-----

0 

Az: Large 

I 

SmaxS(t) 

0.2 -b--7/;r--r-;r-"/7V/"""C"-/ 

o 

\..I 6 1: No change 6i Increase 

1 

0.7-

0.3 

0 

C12: Caution C11 : l,GOOd 

) 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 R 

Fig. 5.8. Example of reliability and condition assessment 
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As was suggested in [18], fuzzy relations can be useful in obtaining 
adaptive alarm thresholds in order to minimize 'false' alarms. The fuzzy 
fault tree as applied by Isermann [19] is also a useful tool in holistic 
dynamics. 

5.2 
Symptom-based Decision 

Decision-making based on symptoms can be done simply, for example by 
the use of thresholds and also statistically-based. 
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S.2.1 
Deterministic Decision 

Symptoms such as scalar or vectorial quantities, or discriminants, can serve 
for decision-making. Examples of this are 
• resonance (or eigen -) frequencies f ref in the form 

with the modification Ll f with respect to a parameter modification, for 
example a stiffness modification Llk/k, 

• spectra ratio (new spectrum/previous or reference spectrum), 
• amplitude and phase or real and imaginary components of a dynamic 

quantity. 

The choice of symptoms has already been discussed in Sect. 2.2.2. The 
goal is important. For example, the early warning time is essential if the 
symptom serve for monitoring. This effect is indicated in Fig. 5.9. The 
frequency of the measurement is also important. In the frequency domain 
the frequency modification in the time unit Llf / LlT and the frequency 
resolution B are essential for the optimum mesuring frequency (Llf / LlT)/B. 

An example of decision-making is shown in Fig. 5.10. The relative eigen­
frequency deviation versus the relative parameter modification is plotted 
as a fault indicator. Figure 5.10 is self-explanatory. It should be noted 
that, for example, the fault evolution of structures and machinery rotors is 
quite different. The eigenfrequency changes of structures are often of the 
magnitude of O. 1Hz/year. With a frequency resolution ofO.125Hz a mon­
itoring of 1 x to 3 x per year is optimum [183]. In contrast to these mod-

SYMPTOM 

(NORMALIZIED) 

o 

./ 

d 

I. 
--TIME 

WARNING TIME -+---

ALERT 
THRESHOLD 

NORMAL VALUE 

Fig. 5.9. Symptoms or fault indicators with their various sensitivities with respect to early 
warning times 
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GOOD 

NOMINAL VALUE 

ATTENTION THRESHOLD 

UNECONOMICAL 

SAFETY THRESHOLD 

NOT ALLOWED 

Ak 
-

k 

Fig. 5.10. Fault indicator (relative frequency) versus relative parameter modification 

ifications, rotor damage can evolve within hours; this means that several 
measurements per minute are necessary etc. One has to optimize symptom 
sensitivity and the frequency of measurements in order to minimize the 
amount of data. 

5.2.2 
Statistical Decision Based on Histograms 

One can use empirical statistics within the symptom-based decision. Fig­
ure 5.2.2 shows an example of the averaged symptom life curve S(O) [24]. 
As can be seen, it is possible to obtain the pdf of GOOD condition PG(S) 
and the pdfs of the breakdown P(Sb) and P(Ob), even though on the basis 
of very few events, and the pdf of the initial symptom peSo). 

In a first approximation, assuming Gaussian distribution of the FAULTY 
condition, P(Sb), with the corresponding standard deviation CTSb the symp­
tom limit value SI can then be calculated as the difference between the av­
eraged breakdown value Sb and the standard deviation CTSb (see Fig. 5.2.2): 

As a result, theoretically we will have 16% of possible breakdowns. Of 
course, the symptom alarm value, for example Sa = Sb - 3CTSb can also be 
calculated, which will give 0.13% of possible breakdowns [24]. 

Another method for calculating the symptom limit value SI is the use of 
the Neyman-Pearson rule (see Chap. 2). It is based on the minimum num­
ber of breakdowns (see Eq. (5.1.19), classification of the FAULTY condition 
as GOOD), having specified the allowable probability A (see Eq. (5.1.20)) 
of unnecessary repair (i.e. classification of a GOOD condition as FAULTY). 
This procedure is in use in machine condition monitoring. Examples are 
given in Chap. 2. 
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LIKELIHOOD 
RATIO I 

2 3 4 5 SYMPTOM VECTOR 
COMPONENT NO. k 
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Fig. 5.12. Sequential probability ratio test using successive components of the symptom vector 

An additional method will be mentioned here due to its simplicity. 
This is the sequential probability ratio test (SPRT). If the symptom vector 
components are ordered according to descending information contents, or 
ascending costs of measurements, the use of SPRT can be advantageous 
due to lower costs for the measurements. The idea behind this is the 
assessment of the probability ratio of a GOOD condition to a FAULTY 
condition for each component [24, 180]: 

I (Sm) _ rrK PSkIG(SklwG) { > A choose WG, 
K K - k=l PSkIP(SklwF) < B choose Wp. 

As is seen, monitoring and measurements can be stopped when the like­
lihood ratio exceeds the limits IA or IB, as illustrated in Fig. 5.12. 

5.2.3 
Statistical Decision Using Significance Tests 

Statistical decision implies that symptoms are assumed to be random vari­
ables. The sample mean, the sample variance and moments are well known. 
The quality of the estimates is described by particular criteria, for example 
by the bias, variances etc. (see Sects. 4.2.4 and 4.6.1). Significance tests in 
these simple cases are based on assumed pdfs, mostly normal distribu­
tions, and considering the finite sample size, on Student's t-distribution. 
Relations of random quantities often follow the X2-distribution. For de­
tails see elsewhere, for example [12]. The probability c of error (type 1) 
is referred to as the significance level. Which significance level should be 
adopted in the special case, of course depends on the particular problem. 
Common values for care 0.001, 0.01, and 0.05. A value of c between 5% 
and 1 % is considered as almost significant, a value between 1 % and 0.1 % 
as significant, and a value below 0.1 % as highly significant. 

Significance testing is advantageous, too, when more than two classes 
are considered, but without a proper statistical description. For example, 
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a good statstical description of a GOOD condition may be available, and 
many faults have to be distinguished in FAULTY conditions. 

5.3 
Model-based Decision 

The models used here are models adjusted to the recent state (}i defining the 
system condition. The previous models provide reference models, which 
allow a comparison of the current system performance or a diagnostic 
mode. The most difficult problem in model adjustment is to establish a 
usable model. This requires an estimation of variances of the parameter 
estimates which are small enough for the purpose. 

As already stated, a dynamic model with a few DOF can represent 
the dominant dynamic condition of the system: a low-order model. The 
difficulty is to find the characteristics of the system which are s~nsitive with 
respect to the system modifications, and which allow mapping in order to 
construct the model. For diagnostic purposes a more complex model may 
be required, for example a static model with many DOF. 

Tests of significance are discussed within the fundamental statistics. 
There are model fit tests using hypotheses testing, for example [12, 69]. In 
many situations, especially in the case in question, the decision would be 
made better by quoting confidence intervals of the parameter estimates. 
Often one obtains detailed information by treating it as a pure estimation 
problem. The estimation of parameter errors and how to perform confi­
dence intervals is discussed in Sect. 4.6.1. Significant parameter modifica­
tions therefore can be determined and used as a basis for decision-making 
in the particular case. 

5.4 
Assessment 

Assessment is now possible with the various adjusted mathematical models 
describing the state conditions of the system under investigation at the 
chosen life times. Consequently, one can use all the advantages of system 
analysis. Additionally, these mathematical models are verified, validated 
and (hopefully) usable. This is the best known knowledge base concerning 
the system. According to Figs. 3.1 and 5.1, these models enable the user 
• to make an assessment of the state condition by simulation (maximum 

stresses etc.) 
• to find causes in the case of significant modifications 
• to make a trend prediction of the system's state condition, and 
• to make decisions on further actions if necessary. 

These points are dealt with in detail in the following. 
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5.4.1 
Assessment of State Condition by Simulation 

All the features of system analysis are available. Various loading condi­
tions and various faults with their effects on dynamic and static perfor­
mances can be simulated. Limit stresses, pre-given acoustic levels, limit 
displacements etc. lead to an assessment when compared with the sim­
ulated corresponding quantities. As already mentioned, one has to take 
into account the characteristics of the models used. Dynamic models are 
global, energy-equivalent models with generally a few DOF which are not 
able to investigate local properties if required. In the latter case static mod­
els have to be taken. However, if the system modification is restricted to 
local causes, then static subsystem modelling restricted to the submodel 
with the local modification is sufficient. 

It is noted here that eigenquantities are generally seldom suitable for 
serving as symptoms. Eigenfrequencies are proportional to the energies of 
the respective DOF, therefore they are global quantities with some local 
properties (dependent on the number of DOF). The mode shapes with 
their local properties are not very sensitive with respect to local system 
modifications, and additionally, measured mode shapes are corrupted by 
noise. However, as already mentioned in Sect. 2.1.2, the second and third 
spatial derivatives of the modal shapes are very sensitive to local stiffness 
modifications. Consequently, they are appropriate in this sense, but one 
has to avoid numerical differentiation (by taking the equations of motion, 
see Sect. 2.1.2 and [9]). But the advantage of the eigenquantities is their 
use in model adjustment to obtain a validated mathematical model, which 
means that the structure of the model can be corrected directly by the 
known eigenstructure given by the identified modal quantities. 

If, for example, a crack is located, then a special crack element can be 
introduced in the corresponding place of the FE-model [184] in order to 
estimate the crack depth for assessment. 

5.4.2 
Cause Finding 

Evolving modifications of the system are detected by deviations of symp­
toms, states, and/or parameters. Significant deviations compared with the 
previous values can lead to the causes of these modifications. The causes 
can be due to weak points of the system, and to erroneous assumptions 
of the loadings. The tools for cause finding are given by prior knowledge 
of system analysis (including, of course, the symptoms chosen, sensitiv­
ity analysis, weak point analysis etc.) which results in the damage cata­
logue (see Fig. 5.1), by simulation, because various assumptions have to 
be checked. 

In many cases the causes of failures are primary causes2 described 
by patterns in the symptom domain. In such a case, pattern recognition 

2 Sometimes called root causes, i.e. principle causes which are common to a class of systems. 
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techniques or neural networks can be used in order to recognize on-line 
the emerging primary cause of faults. 

In this context mention must be made of input identification as a sys­
tematic approach when the loading has changed during the system's life 
time. If, as already mentioned, it is possible to find a parametric model 
for the forcing, then the problem is reduced to parameter estimation, and 
the known methods of estimation can be applied. 

Additionally, system parameter modifications resulting from a compar­
ison of the recently adjusted parameters with the previously adjusted ones 
indicate related properties of the system responsible for the modifications. 
This recognition provides motives for thinking over system changes. 

5.4.3 
Trend Prediction 

The knowledge base consisting of the various adjusted mathematical mod­
els at the different life times fh, i = 1(l)N, makes it possible to investigate 
the fault/damage evolution, and to establish a mathematical model for ON+! 
by the application of deterministic (extrapolation) or stochastical methods 
(see Sects. 2.3 and 4.6.4). The future state condition can also be predicted 
and assessed with this predicted model (see above). 

Many prediction techniques can be used, even some taken from 
econometry like Brown's exponential smoothing, which gives satisfactory 
results in machine diagnostics [24]. However, the best approach is to find 
a proper evolutionary model of the system under consideration as an ETS. 
Weibull and Frechet distributions are suitable for this purpose [185]. They 
result in minimum prediction error and are easy to program for computing 
(see Sect. 2.3, Eqs.(2.3.30) and (2.3.60)). 

5.4.4 
Actions 

Based on the assessment, various decisions can be made. These can con­
sist of a changed type of monitoring and shortened inspection intervals, 
via restricted use, right to a modification of the system and phase-out. 
These possible actions are indicated in the extended system identification 
methodology (Fig. 1.2) and in the flow-chart 5.1. 

Of course, the actions are connected with costs, risks etc., and therefore 
require suitable organisation and management methods which, however, 
are outside the scope of this book. 

5.5 
System Modification Procedures 

System modification may be required as a result of assessment and 
decision-making. The existing knowledge base can help to find suitable 
modifications. Linearized or finite sensitivity analysis thus shows which 
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parameters of which parts (subsystems, elements) of the system produce 
a large effect in the desired direction of modification. 

If direct modification of physical parameters due to the result of di­
agnosis is required, then system analysis will give the resulting dynamic 
response. If the diagnosis requires modified dynamic behaviour, then the 
parameter modifications are asked what will produce these responses. Only 
this problem will be discussed in the following. 

As already stated, sensitivity analysis can help to find the most sen­
sitive parameters with respect to the required response. One can obtain 
more information with the use of the spectral decompositions of the pa­
rameter matrices if eigenquantities are decisive. The best procedure to be 
applied is to follow the problem formulation itself: it is a design prob­
lem, which means an optimization problem with constraints. What is re­
quired is a minimum modification (in location and quantification) subject 
to pre-defined constraints. The latter procedure will be discussed only in 
principle. 

5.5.1 
Sensitivity Analysis 

Differential sensitivity analysis yields amplification factors/functions with 
respect to model parameters which influence the state condition of the sys­
tem to a great extent. Eq. (2.1.40) for example, describes the amplification 
factor in subsystem modelling for the eigenfrequency shift with respect to 
a change of the related factor aKi of the submodel stiffness. Here, however, 
in this example, what is required is the change of aKi with respect to a 
required change in the eigenfrequency AOr: 

1 
tl.aKi == T tl.Aor . 

uOrK{uor 
(5.5.1) 

However, the coupling, and this means the effect of the modification (5.5.1) 
on the other eigenquantities (i r), has to be taken into account. 

The reader is referred to Sect. 2.1.3, where various examples are dis­
cussed. As already stated: parametrization, for example within subsystem 
modelling (see Eqs. (2.1.37) or (2.1.45)) and differential analysis or fi­
nite modification investigations, including opportune modifications of the 
model structure, will give information on the system parts (subsystems, 
elements) which have essential effects on the quantities required. 

5.5.2 
Spectral Decomposition 

If modal quantities are decisive for system modifications, then the spectral 
decompositions of the parameter matrices will give the answer concerning 
which parameter matrix elements should be changed. It may be required 
that 
• some eigenfrequencies should be shifted, 
• in order to generate a pre-defined nodal point of a mode etc. 
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We will restrict ourselves to the associated undamped model. Models of 
damped systems can be handled correspondingly in the state space for­
mulation. 

The spectral decompositions are given in Sect. 2.1, Eqs.(2.1.16), (2.1.17): 

n 

K = L AOiMuo(uJ'iM, M = MT , (5.5.2) 
i=l 

~ 1 A AT 
G = L...". -UOiUOi, 

i=l AOi 
(5.5.3) 

with the normalization mgi == 1. In addition, 

(5.5.4) 

holds true for the inverse inertia matrix due to the orthonormalization 
condition of the eigenvectors. 

As can be seen, pre-given modified eigenquantities determine the mod­
ifications in the parameter matrices which have to be realized in order to 
obtain a modified system. The explicit formulation of how the stiffness 
matrix has to be modified for pre-given changes of the modal quantities 
(2.1.23) is given by Eqs. (2.1.24) to (2.1.27). 

However, this method has to be applied cautiously, because the eigen­
quantity modifications cannot be chosen arbitrarily (due to the require­
ments of operation/service). They must be consistent with the system prop­
erties from the point of view of mechanics, otherwise the pre-given quan­
tities will result in non-physical interpretable results and/or non-realizable 
system modifications. Thus, for example, for beam-like systems the order 
of the normal modes (number of nodal points in comparison with the 
increasing eigenfrequencies) is not permitted to be changed, the ge'neral­
ized matrices must remain positive definite etc. It is hard to fulfil all the 
required conditions for pre-given values. 

5.5.3 
Minimum Modification by the Application of Optimization 

Instead of direct modification one can ask for minimum modification sub­
ject to pre-given parts (submodels) of the system and due to dynamic 
requirements. The first step is the preselection of those submodels which 
are free for modifications. This is done by prior knowledge based on the 
diagnostics already done, by sensitivity analysis and, if necessary, by recal­
culations. The second step is then the definition of design parameters. The 
third step consists of the definition of the required dynamic behaviour. As 
stated above, the dynamic behaviour cannot be defined arbitrarily. 

As can be seen, the problem is formally identical to the adjustment 
problem, where the measured data of the identification problem are sub-
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stituted by predefined data. The measured data of existing systems auto­
matically fulfil the requirements of dynamics and realization (existence). 
However, pre-given data have to be checked carefully with respect to their 
realizations in the particular case. 

Various optimum modifications (stiffnesses, inertias, dampings) with 
various constraints are discussed in [186]. The solutions presented in [187] 
for the various formulations can be completed by the explicit solutions 
published by Baruch [155, 154]. The solution (4.3.57) can be supplemented 
by 

Kc = K- (Kl +Kf), 

1 
Kl = [I - -(U;Us)-IU;](KUs - Ps)(U;Us)-IU;, 

2 

(5.5.5) 

(5.5.6) 

using static measurements: Us is the measured and corrected (e.g. sym­
metrized) displacement matrix, and Ps is the force mattix. Of course, all 
the matrices should be composable with each other. The latter solution 
minimizes the Euclidean norm of K1• These inverse problems seem to be 
well-posed, because the solutions avoid inverse matrices, or they contain 
already generalized inverses. 

If weightings are implied in the loss functions of the minimum formu­
lations, then the weightings for the physical parameter changes have to be 
chosen carefully. If masses are modified, then relatively large mass mod­
ifications, assembled in the matrix dM, are allowed where large masses 
exist: with the Cholesky decomposition of the inertia matrix M = MTM 
the minimization problem can be formulated as 

Large changes may not be significant, where large stiffnesses exist. How­
ever, if there are large masses, the weighting can be chosen as 

II(M-1)T dK(aK)M-11I -+ min(aK)' 

With regard to the weighting of the damping modification without any 
additional knowledge, it can be chosen with the damping matrix B = iFs: 

Since the goals by the Euclidian norm mentioned above are not inde­
pendent, hierarchical optimization should be done [188]. Of course, con­
straints must accomplish the above aims for non-trivial solutions. 

5.6 
Summary 

The chapter concerns decision-making. As can be seen from the table of 
contents, some fundamental introductions are given. Then the symptom-
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based decision is discussed. As a first step, decision-making uses thresholds 
(see Fig. 5.1). If the modifications of the symptoms are significant, then 
the measuring capabilities have to be used in order to check the system's 
integrity. This check is again the basis for decision-making to determine 
whether the changes of the system require an adjustment of the mathemat­
ical model to the recent state. If the resulting model fulfils the requirements 
of verification, validation, and if it is usable (see Sects. 1.3.1 and 4.2.2), 
then it permits decision-making with respect to physical model parame­
ters. If these modifications are significant (in the meaning of statistics) and 
serious with respect to performance, operation/service and comfort con­
ditions, the latter known from assessment investigations, decision-making 
is necessary with regard to further actions. 

These decisions can be made deterministically, pseudo-deterministical­
ly, statistically or fuzzily. Which rule or method will be chosen depends 
on the available type of information and the particular problem under 
consideration. 

As a result of decision-making, and due to the assessment performed, 
modification of the system itself can be necessary. Consequently, a system­
atic procedure may be required instead of a trial-and-error one. Therefore, 
finally, there is a discussion of various modification methods which can 
take constraints into account. 
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CHAPTER 6 

Examples and Remarks on Applications 

The examples discussed here will illustrate some of the approaches that 
have been presented in the book only in principle. We do not intend to 
demonstrate the model-based procedure completely or in detail. 

The reader can find many academic examples with respect to damage 
detection and localization in the technical literature. The examples are 
mainly based on simulated data; some references are [189] to [198]. [189] 
and [190] identify the extent of a crack by various (spring) models, and 
[189, 184], and [142] emphasize the Kalman filter technique, while [192, 
193] work with ARMA models. The application of Kalman filteringl has 
the advantage that missed state measurements are estimated in addition to 
the parameters. [194, 195] take into account the structure of the matrices 
(called connectivity) and some invariants (as additional information for 
regularization!) . 

The principles of model adjustment are discussed in Sects. 6.1 and 6.3, 
and the latter section contains an application from civil engineering, while 
applications within mechanical engineering are mentioned in Sect. 6.2. 
In addition to the references already cited, paper [196] will be cited in 
connection with model-supported diagnosis, although nonlinearities play 
a role here. 

6.1 
An Academic Example: The FE-Model of a Satellite 

6.1.1 
The System and its Model 

The model is a beam model which is a simplified map of a satellite base 
structure [199]. This beam model (Fig. 6.1) will be taken as the system 
under consideration. It is then modelled by finite elements. This is done 
by beam elements as portrayed in Fig. 6.1. Each beam element is defined 
by two nodes orientated as described in Table 6.1. The simulated damage 
locations are characterized by capital letters and symbols: B for bending 
stiffness, T for tensile stiffness, with a square (0) for changes in lumped 
masses and with a circle (0) for a change in moments of inertia. The nodes 
of the finite element model are indicated in Fig. 6.1 with unbracketed 

1 Again it is noted that filtering/estimation techniques are averaging procedures which work 
against the intention of dealing with local effects. This means that modelling in general (for 
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Fig. 6.1. The beam model of the satellite 

Table 6.1. Orientation of beam elements in the finite element model 

element 1 234 5 678 9 
orientation y 

node numbers j, k 0,1 
-x x Y -x x Y Y Y 
1,2 1,3 1,8 2,4 3,5 4,6 5,7 8,9 

numbers (0-9) and the beam elements are labelled with square-bracketed 
numbers ([1]-[9]). The Oth node is fixed, while nodes 1 to 9 each have 
two translational degrees and one rotational degree of freedom, all in the 
plane of the system. 

Each element of the nine beam elements is characterized by four phys­
ical parameters, and in order to complete the physical description of the 
structure with each of the nine active nodes (node 0 is fixed and therefore 
irrelevant) two physical parameters are associated, as shown in Table 6.2. 
For the ith (i = 1(1)9) beam element Pi, Ai, Ii and f.i (see Fig. 6.1) rep­
resent the density, the cross-section area, the area moment of inertia and 
the length, while for the ith node mi and I ai represent the lumped mass 
and the rotational moment of inertia, respectively. 

global identification) and subsystem modelling (for local identification) combined with prior 
knowledge of the system behaviour and that of damage effects are very important. 
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Table 6.2. Physical parameters of the initial model 

p;[10Skg!m3 ] A;[1O-4m2] I;[10-6m4 ] m;[kg] I,,;[kgm2 ] 

0.5384 7.4283 369.52 42 

2 1.051 5.7103 5.2872 180 42 

3 1.401 6.8524 7.1377 165 42 

4 1.077 9.2854 527.88 42 

5 1.051 5.7103 5.2872 42 

6 1.401 4.5682 6.609 14 1.8 

7 5.045 0.1487 1.9457 39 4.2 

8 10.09 0.1487 2.8198 360 37.5 

9 0.0 0.08566 0.46396 12 1.0 

In accordance with the generalized displacement vector (see Fig. 6.1) 

(6.1.1) 

where Wxi, Wyi, (¥i denote in-plane bending deflections and torsion angles, 
the inertia matrix of the 27-degrees-of-freedom FE-model is diagonal and 
consists of three additive parts: 

9 

M L diag(m~ + m~ + m}) (6.1.2) 
i=l 

diag(mo). (6.1.3) 

m~, m~, m} and ma are (27,1)-vectors whose structure is specified as fol­
lows: 
• The rotational moment of inertia of lumped mass of the ith node: The 

(27,1)-vector m} contains the dimensional parameter lai in position 
3i, i = 1(1)9, and zeros elsewhere. That is, m} = laie3i, where en is 
the nth standard basis vector of dimension 27, which consists of zeros 
except for a unit in the nth component. 

• The lumped mass of the ith node: The (27,l)-vector m~ contains the 
dimensional parameter mi in positions 3i - 2 and 3i - I, and zeros 
elsewhere. That is, m~ = mi(e3i-Z + e3i-I), with i = 1(1)9. 

• The element mass contribution: The index i ranges over 1 ... 9, denoting 
the nine beam elements of the model. The ith beam element is now 
defined by the ordered pair of nodes with indices (j, k), j < k. For the 
nine elements the defining nodes are listed in Table 6.1. If i = 1 and 
therefore j = 0, k = 1, the (27,l)-vector m~ contains the dimensional 
parameter llPlAd2 in positions 1 and 2 and zeros elsewhere. That is, 
m~ = flP~Al (el + ez). For all other beam elements the (27,1)-vector 
m~(i > 1) contains the dimensional parameters liPiAi/2 in positions 
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3j - 2, 3j - 1, 3k - 2 and 3k - 1 and zeros elsewhere. That is, m~ = 
fiPiAi( ) 

2 e3j-2 + e3j-l + e3k-2 + e3k-l . 
For each of the nine beam elements the stiffness matrix consists of two 

parts, representing the tensile and the bending terms 

9 

K = :L[K~ + K~], (6.1.4) 
i=l 

where K~ and Kb are (27, 27)-matrices associated with the ith beam ele­
ment. With <the functions 

5Ji 12· Edyn . Ii/iI 
52i 6· Edyn . Ii/if 
53i 4· Edyn . Ii/ii (6.1.5) 
54i 2· Edyn . Ii/ii 
5Si Edyn' Ai/ii, 

of the parameters of the ith beam element, where Edyn = 7.1010 [N/m2] 

denotes the Young's modulus, the stiffness matrices K~ and K~ of the ith 
beam element can now be defined. They depend on the orientation of the 
beam element. The positive x and y directions are indicated in Fig. 6.1. 
For node-index k =1= 0 , define the triplet: nk = (3k - 2, 3k - 1, 3k). Let the 
ith beam element be orientated in the +x direction from node j to node k. 
Then all the elements in the (27, 27)-matrices K~ and K~ are zero, except 
the elements with the row index nj and column index nk. The structures of 
the non-zero 6 x 6 submatrices of K~ and K~ with row and column indices 
(nj, nk) are: 

5Si 0 0 -5Si 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

-5Si 0 0 5Si 0 0 (6.1.6) 

0 0 0 0 0 0 
0 0 0 0 0 0 

0 0 0 0 0 0 
0 5Ji -52i 0 -51i -52i 
0 -52i 53i 0 52i 54i 
0 0 0 0 0 0 (6.1.7) 

0 -5Ji 52i 0 51i 52i 
0 -52i 54i 0 52i 53i 

If the ith beam element is orientated in the -x direction, then K~ is 
modified by replacing 52 by -52' If the ith beam element is orientated 
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in the + y direction, then the 6 x 6 non-zero submatrices of K~ and K~ 
become: 

0 0 0 0 0 0 
0 55i 0 0 -55i 0 

K~,(nj,nk)0(nj,nk) = 
0 0 0 0 0 0 

(6.1.8) 0 0 0 0 0 0 
0 -55i 0 0 55i 0 
0 0 0 0 0 0 

51i 0 52i -5Ji 0 52i 
0 0 0 0 0 0 

Ki = 52i 0 53i -52i 0 54i (6.1.9) b, (nj,nk)0(n j' nk) -51i 0 -52i 51i 0 -52i 

0 0 0 0 0 0 
52i 0 54i -52i 0 53i 

The first beam element is orientated in the y direction, and since its first 
node (index 0) is inactive, the non-zero entries of its stiffness matrix are 
contained in the second (3, 3)-diagonal block of Eq. (6.1.8) and Eq. (6.1.9) 
for i = 1 : 

( 
0 0 0) o 551 0 , 
000 

(6.1.10) 

(6.1.11) 

In order to avoid singularities in the dynamic flexibility matrix a pro­
portional damping matrix is defined as 

C := coM, Co = In(lOO), (6.1.12) 

where Co is chosen arbitrarily. Combining Eqs. (6.1.3) to (6.1.9) yields the 
dynamic stiffness matrix of the initial model 

S(jw) := -w2M + jwC + K (6.1.13) 

which completes the formulation of the finite element model of the example 
considered. 

6.1.2 
The Damaged System and the Simulation of the Dynamic Response 

The damage is simulated in the FE-model, and it is assumed that this 
system state occurred at a particular life time without denoting it. 
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The model of the damaged system. The damage of the system is simulated 
by deterministic changes in some physical parameters of the initial model. 
For the particular example presented here, the damage assumed is due 
to an increase of inertia in nodes 5 and 9 of 40% and 10%, respectively, 
and due to an increase of moments of inertia in nodes 1 and 7 of 10% 
and 20%, respectively. Thus the matrix of inertia Md = diag(mg) of the 
model of the damaged system differs from that of the initial model (see 
Eq. (6.1.3)) only by the six components 

mg3 = 1.1· m03 
mg I3 = 1.4·mOI3 
mg l4 1.4·mOI4 
mg2l 1.2· m02l 
mg25 = 1.1· m025 
mg26 1.1· m026. 

(6.1.14) 

Moreover, a decrease in the bending stiffness of beam elemept 8 of 20%, 
and a decrease in the tensile stiffness of beam element 9 of 10% is assumed. 
Therefore the stiffness matrix Kd of the model of the damaged system 
differs from that of the initial model only in two of the 18 element stiffness 
matrices (see Eq. (6.1.4)) 

Kd8 - 08 K8 b - .' b 
Kf9 = 0.9· K;. (6.1.15) 

Using Eqs. (6.1.3) and (6.1.4) together with Eqs. (6.1.14) and (6.1.15), 
and using the same damping matrix (6.1.12) as within the initial model, 
the dynamic stiffness matrix of the model of the damaged system becomes 

(6.1.16) 

This completes the definition of the model of the damaged system. 

Simulation of the dynamic responses. Using the dynamic stiffness matrix 
of the model of the damaged system defined in Eq. (6.1.16), the response 
of the system in the frequency domain is given by 

Ud(jw) = [sd(jw)r l P(jw), (6.1.17) 

where the 27-dimensional complex excitation vector P(jw) denotes the 
Fourier transform of the vector of the input signals. The optimum choice 
of the excitations is due to a method introduced by Cottin [119]. In this 
example only translational excitations are chosen, i.e. 

P(jw) = BoP(jw), (6.1.18) 

with the (27, 18)-control matrix 

( 6.1.19) 
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Fig. 6.2. Effect of simulated measurement errors on the first component of the response of 
the model of the damaged system 

This restriction leads to a suboptimum excitation. In addition to each of 
the first 12 eigenfrequencies of the associated undamped initial model, 10 
excitation frequencies in the neighbourhood of each eigenfrequency are 
chosen for a total of 132 excitation frequencies. The output measurement 
is then simulated by corrupting the responses with an additive noise of 
non-correlated complex random numbers with zero mean values and with 
a magnitude of 3 % of the maximum absolute value of the components of 
the response vectors, i.e. 

s .-

E{~d 

E{ffi~iffi~/} 

3 

100 

0, 

max IUf(jWk)l, 
1=1(1)27 

k= 1 (1)132 

127 = E{~~i~~/}' 

(6.1.20) 

(6.1.21) 

(6.1.22) 

(6.1.23) 

The extreme effects of this measurement error simulation are depicted in 
Figs. 6.2 and 6.3. The dashed line shows the dynamic response components 
ut and U~6' respectively, without measurement errors, while the solid 
line represents the same response components including the measurement 
errors defined above, i.e. UT and UTt;. 
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Fig. 6.3. Effect of simulated measurement errors on the last translational component of the 
response of the model of the damaged system 

6.1.3 
The Localization of Faults 

The localization of the faults will be performed directly via parameter es­
timation and subsystem modelling. This means that we are looking for 
parameter estimates which correctly describe the local modification prop­
erties of the system, while the modifications of the system are required 
only qualitatively. 

The input residuals are used together with the submodel decomposition 
method (see Sect. 4.3.4) for the localization, and this provides affine linear 
model parametrization 

r 

S(jw, a) = I: S,xCjw)aa + SC(jw), (6.1.24) 
a=1 

where SC(jw) denotes a constant part of the dynamic stiffness matrix with 
respect to the life time of the system, i.e. it is independent of the di­
mensionless model adjustment parameters a = (ai, ... ,arl. Within the 
example considered here this constant part is given by 

SC (jw) = jwC = jwcoM. (6.1.25) 



www.manaraa.com

6.1. An Academic Example: The FE-Model of a Satellite 203 

The submodels, represented by the matrices Sa(jw) , a = 1(1)r, have been 
chosen as indicated in Table 6.3. They can always be defined in such a way 
that the following holds for the prior model (see Eq. (6.1.13)) 

S(jw) = S(jw, e) 

with the r-dimensional vector e = (1, ... , 1) T. 

Table 6.3. The dynamic stiffness matrices of the submodels 

9 
10 

18 
19 

27 
28 

36 

-(,idiag (m02Se2S + m026e26) 
-w2diag (mo 3e3) 

Extending the transformed input residual 

(6.1.26) 

S-l(jW, e)S(jw, a) U(jw, a) = S-l(jW, e)P(jw) = U(jw, e)(6.1.27) 
, , 

v 

=: Z(jw, a) 

for all the excitation frequencies w -+ wi, i = 1 (1) 132, and rewriting the 
result in a real form by doubling the order yields 

Z(a)U(a) = U(e), (6.1.28) 

where the generalized real output vectors U(e), U(a) of the initial model 
and of the parametrized model respectively are both of dimension 27 ·132· 
2 = 7128. By introducing the model error vector x = a - e, Eq. (6.1.28) 
can· be rewritten yielding 

Z(x)U(a) = U(e) - U(a). (6.1.29) 

After defining the (7128, 36)-real matrix A A(U) through A(U)x = 
Z(x)U, which holds for all x, U, and after abreviating the right-hand side 
of Eq. (6.1.29) by {(U(a)), the substitution of U(a) by the measured gen­
eralized output urn which results from Eq. (6.1.20) by the same extension, 
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Fig. 6.4. The values of the indicator using the normal solution (see Table 6.3) 
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as explained above, leads to the basic equation of the inverse problem of 
localization 

(6.1.30) 

LS solution without regularization. The LS solution of Eq. (6.1.30) is called 
the normal solution 

(6.1.31) 

where the superscript + denotes the Moore-Penrose inverse. Figure 6.4 
shows the indicator with respect to the solution X, i.e. a measure of mod­
ification locations, 

IXal 
.9ia (x) := I I' max x(3 

(3=I(J)r 

where Xa , x(3 are components of x, calculated at x = X. 

(6.1.32) 

The dashed curve is the exact solution. A comparison of the LS solution 
with the exact one shows that the normal solution is not usable due to the 
ill-conditioning of the inverse problem. 
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LS solution with Tikhonov-Phillips regularization. Using the Tikhonov­
Phillips regularization, the regularized solution 

Xy = [AT (Um)A(Um) + ylrr1 AT (Um)f(Um) 

solves the modified problem 

(6.1.33) 

(6.1.34) 

where the regularization parameter y is calculated via the Lagrange mul­
tiplicator method using pre-given error bounds2 

[[ 11[[ < 

< 

.j2' 
8 

.j2' 
€, 8> O. (6.1.35) 

The result is depicted in Fig. 6.5 v.'ith y = 2.3 10-4 together with the exact 
solution (dashed). As can be seen, the regularized solution is now better 
than the normal solution, but it still does not fit the demand of localization. 

LS solution with regularization through data sensitivity. Figure 6.6 shows 
the values of the indicator using the weighted regularized solution 

This solution satisfies the problem 

mIn {[[AX - f[[2 + yxT GX} , 

(6.1.36) 

(6.1.37) 

where the weighting matrix G is an estimate of the measure of the data sen­
sitivities of the components of the normal solution [166], and the regular­
ization parameter y is calculated as before (6.1.35). This data sensitivity is 
to be understood in the following sense: if the normal solution x = x(Um) 

is visualized as a nonlinear function of the generalized output Um , the 
measurement errors are small changes in the argument of the normal so­
lution. Thus a measure for the data sensitivity of the normal solution can 
be defined empirically by calculating the following expectations3 

G = s· E {(x(Um + Z) - x(U») (x(um + Z) - x(Um»)T}, (6.1.38) 

where Z is a vector consisting of noncorrelated random numbers with zero 
mean values and s is a scalar, which is chosen here in such way that the 
largest diagonal element of G is equal to one. 

2 7J is the extension of the error vectors 7Jj defined in Eq. (6.1.20). 
3 Its performance is similar to the Monte Carlo method. 
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Fig. 6.5. The values of the indicator using the Tikhonov-Phillips regularized solution (see 
Table 6.3) 

All 6 parameter errors are localized correctly by choosing a decision 
level of 0.15 (see the dashed curve which represents the exact solution): it 
is the correct qualitative solution. 

6.1.4 
The Adjusted Mathematical Model 

A reduction of the dimension of the solution space to these 6 components 
leads to the reduced problem [166] 

( 6.1.39) 

The normal solution of the reduced problem can be taken approximately as 
the solution of the problem. The regularization is done here by introducing 
the reduced parameter space, which is known from the result oflocalization 
done in the previous section. A WLS solution can be performed in order 
to improve this result. The corresponding covariances can be estimated, 
or approximated by the Hessian matrix. The various estimates for the 
model modifications are compared in Table 6.4. The first row shows the 
model modifications introduced for simulation of the damage. The second 
row shows the corresponding components of the normal solution (6.1.31). 
The third row contains the result of the normal solution of the reduced 
problem (6.1.39). The relative errors are given in rows four and five. 
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Fig. 6.6. The values of the indicator using the weighted Tikhonov-Phillips regularized solution, 
with the data sensitivities of the normal solution as the weighting matrix (see Table 6.3) 

Table 6.4. The model errors used in order to simulate the damage, the results of model error 
estimation with (superscript red) and without reduction of the dimension of the solution 
space 

a 5 9 10 16 26 36 

Xu 0.4 0.1 0.1 0.2 -0.2 -0.1 

Xu 0.01 -0.29 -0.45 -0.08 -0.43 -0.48 

-red 
Xu 0.17 0.10 0.05 0.43 -0.05 -0.10 

Xa -xa 
0.99 3.94 5.53 1.41 1.16 3.77 

Xu 

Xa - x!ed 
0.58 0.003 0.46 -1.14 0.75 0.04 

Xu 

6.2 
Application in Mechanical Engineering 

Some differences exist between diagnostics and condition monitoring in 
mechanical and civil engineering. One difference lies in the fact that, in 
addition to the structural parameters, operational parameters like rota­
tion speed and pressure play an important role for systems of mechanical 
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engineering. Another difference is to be seen in the following. Condition 
monitoring for some critical machines, like turbosets, main drive engines 
etc., started some 50 years ago, with the simple measurements of vibrations 
and other symptoms (see, for example, [200,201]. Therefore a substantial 
amount of information has been gathered concerning the faults of machine 
element, subassemblies, etc. The same statement holds true concerning the 
methodology of the observation of related faults in machines. One can re­
fer, for example, to the special table prepared by IRD Mechanalysis (see 
[24]), where one can find which type of machinery fault can be observed 
using a suitable symptom and with a pregiven probability of fault de­
tection. This is even distinguished for the given locations of signal and 
symptom observation. For example, the detection of shaft misalignment 
can be done by observing the shaft's relative vibration with the probability 
0.8, but when observed at the bearing support the probability of detection 
will be as low as 0.1. The same applies to machine casing. With respect to 
the direction of vibration observation for this fault, the axial direction has 
the probability 0.5, the horizontal one 0.3, and the vertical one 0.2. 

Based on these data one can state that for machine diagnostics the 
fault location problem is currently not as urgent as for civil engineering 
systems (with the exception of special cases of turbosets, for example). 
This may be also due to the much smaller dimensional scale of machines 
in comparison to buildings (approximately ten times smaller). However, 
this does not mean that model-supported diagnostics is not needed for 
machines and equipment. Apart from this, by having a good holistic model 
of some critical machines we can verify and validate all the historical data 
on machine behaviour gathered previously. With the same model we can 
simulate the condition degradation during the modelled usage, and in this 
way we can build and then validate the models, and assess the machine 
conditions as summarized below: 
• finding weak structural points where the early degradation occurs, so 

they can be modified in successive redesign. If this is not the case, 
they will be the first places for the installation of condition monitoring 
equipment. 

• Finding and choosing the best damage-orientated symptom S (for de­
tection, location and assessment), by simulating a number of possible 
measurable quantities, and by processing their signals accordingly. 

• Choosing the best symptom operator <p(.) for the given case of wear, 
together with its shape factor -y, which allows us to adjust the evolution 
of mass, spring, damping coefficients in our holistic model, (see Table 
2.2 and Eq. (2.3.30)). This will also serve for the prognosis of symptom 
behaviour in the given operational condition (see also the example on 
diesel engine condition monitoring in Sect. 2.3.6). 

• Validating by response simulations the fault detection/assessment deci­
sions obtained from previous statistical data. 

Some of the enumerated tasks and cases are illustrated below. 
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6.2.1 
The Choice of Symptom Operator Shape 

In modelling the system condition evolution, either for simulation or in 
practical cases of condition monitoring, one of the important tasks is to 
choose the functional form of the condition degradation model. Table 2.2 
will help us to choose a model. But how can the shape factors 'Y, a of the 
symptom distribution and the damage measure (see Chap. 2) be assessed? 

As usual, we can proceed in two ways to choose heuristically the sim­
plest possible model, for example a linear one: 5/50 = 1 + (ljy)D, D = 
8/8b, either by trial and error, or by the use of some additional data (cor­
rosion speed in a given environment, for example) in order to assess the 
shape factors 'Y or a. Secondly, having some symptom data from the real 
case of condition monitoring, we can use a computer program (such as 
already discussed in Chap. 2) to make the job easy and more objective. 

Let us consider this problem in connection with two p~rticular machine 
diagnostics tasks: the monitoring of ball-bearing conditions in a small 
electric motor used in the textile industry, and the railroad diesel engines 
used for the main drive of trains. 

In the first case a large number of units are considered under condition 
monitoring with the root mean square acceleration amplitude as the symp­
tom (298 units). We can assume in a first approach that we have the case of 
a uniform distribution of damage evolution in a sample, i.e. p(D) = const, 
so in this way one can obtain the average symptom life curve. This was 
done with the computer program dem8.m already mentioned, and the re­
sults are shown in the first part of Table 6.5. There one can see that the 
Weibull and Frechet models can be used, since they have almost the same 
determination coefficent4 and x2-measure for evaluating the goodness of 
the fit, expressed by the ordering given in the last column. But due to 
the historical connotation of Weibull regarding ball-bearings, the latter 
was chosen (see the numbers with a circle) as the model for condition 
forecasting and residual life assessment (see, for example, Eq.(2.3.60». 

The second case concerns 56 symptom readings from 4 diesel engines 
in use. Here the average acceleration amplitude was used as the condition 
symptom. It was measured at the top of the first cylinder head [24] and 
each 10 thousand kilometres (56 readings). We can also process these data 
by the dem8.m program. The results are shown in the last part of Table 6.5. 
It is seen that the Weibull model of the symptom operator gives almost the 
optimum for the determination coefficient and x2-measure, although the 
uniform distribution is the better model here, not only due to its simplicity. 
Hence, when looking for the prediction of the next symptom value, or for 
the shape of the degradation function (see Eq. (2.3.30» in a simulation, 
we will use the linear model of wear and symptom evolution. 

4 It is the square of the correlation coefficient. 
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Table 6.5. The choice of symptom models and their shape factors y for the cases in machine 
condition monitoring 

SYMPTOM SHAPE SCALE DETERMIN. SYMPTOM 

DISTRIBUT. FACTOR 'Y FACTOR f3 COEFFIC. R2[%] ¥ MODEL 

ORDERING 

WEIBULL 0,715 11,483 98 4,13 CD 
FRECHET 2,034 14,414 96,8 2,89 2 

SMALL PARETO 1,648 7,823 90,5 24,338 4 

ELECTRIC UNIFORM 0,03 I 59,2 71,151 5 

MOTORS EXPONENT. 0,318 I 89,3 14,661 3 

I 

WHEN THE WEIBULL MODEL IS CHOSEN, SYMPTOM, fo=[-ln{l-D)Ji'.D=~.Y=O.715 
RELIABILITY, R(S)=exp[-( fo )YJ 

WEIBULL 4,117 2,001 96,7 11,476 2 

FRECHET 4,221 1,561 80,0 27,044 4 

PARETO 2,882 1,27 64,2 50,642 5 

DIESEL UNIFORM 0,67 I 97,3 9,697 CD 
ENGINES EXPONENT. 1,066 I 93,5 15,777 3 

WHEN THE UNIFORM MODEL IS CHOSEN, SYMPTOM, fo=I+t D. D=~, y=O.67 

RELIABILITY, R(S)=I+y(l- fa) 

6.2.2 
Model-Based Diagnostics for Rotor Machinery Including Turbosets 

Rotor machinery. Diagnostics is always understood as 'detection - local­
ization - assessment', but in rotor machinery the localization problem is 
less important than in other engineering fields. This is due to the available 
experience and the large amount of statistics already gathered, and also 
to the much smaller physical dimensions compared with other systems, 
which gives another range of dynamic phenomena and wave behaviour in 
particular (see Fig. 3.2 on wave propagation). Hence, with respect to the 
model-based condition monitoring of machines, only the detection and 
the assessment problem have been studied extensively as yet. As one of 
the latest examples of such research let us refer briefly to the main idea 
and findings of paper [189]. 

This paper, with an extended literature survey, concerns the investi­
gation of a simple supported rotating shaft loaded by concentrated mass 
(ring), which is the model of the rotor. The problem is to develop and/or 
improve some known methods of signal processing for the task of the de­
tection and assessment of rotor unbalance and shaft crack. It was shown by 
analytical and experimental investigations that the extended Kalman filter 
and the modified instrumental variable method can be used succesfully for 
the detection and the assessment of both faults with acceptable accuracy 
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when compared with the real condition introduced experimentally. The 
location problem is not investigated. 

Turbosets. As was stated at the beginning of this section, the oldest ap­
plication of condition monitoring and diagnostics in engineering began in 
power stations, and with steam turbines in particular. Initially (up to the 
Sixties), this produced the so-called Turbine Supervisory Equipment (TSE), 
based on transducers, analogue signal conditioning and processing. They 
mainly gave some alarm signals and sometimes a preselected emergency 
shut-off when the symptom limit value was exceeded. But the main work 
of the diagnostic interpretation of elaborated symptoms was carried out 
by diagnostic staff. 

The rapid development in electronics and computer signal processing 
has transformed the TSE of turbosets into Turbine Monitoring Equipment 
(TME), with integrated tailor-made computers for signal processing es­
pecially devoted to turbosets (shaft trajectories, cascade spectrum of run­
downs and run-ups, symptom alarm and limit values, etc). Since the Eight­
ies this has been the standard equipment of most modern power stations, 
and due to the long application of both systems in practice many statistical 
data from turbine diagnostics have been gathered and elaborated. This cur­
rently makes possible the application of knowledge engineering and expert 
systems, in particular, to the diagnostics of turbosets. Due to the progress 
in identification theory and practice, and in computer-based systems of 
the FE-method, and to the successful modelling of some interaction effects 
typical to slide bearing machinery, it was possible to elaborate computer 
models for the simulation of about all dynamic phenomena important in 
diagnostics and in the supervision of operating turbosets. Another obsta­
cle to the modelling of rotor machinery with journal bearings should be 
mentioned here: the highly nonlinear effects in journal bearings and shaft 
sleeves which were elaborated successfully quite recently. 

Hence, according to some papers (see [196] and the refs. cited there) 
the possibility of elaborating some type of model-supported diagnostics 
of turbosets is now emerging. It is tentatively called the 'Intelligent Diag­
nostic System' which, together with the expert system, incorporates and 
integrates two knowledge bases (KB): KBI - all operational and diagnos­
tic data already gathered through the traditional approach, KBII - vali­
dated dynamic model of the turboset, which can be used for checking the 
statements (assessment) previously made, for confirming the recent state 
conditions (symptom values) and for prediction. 

Up to now no methods or computer programs exist for the location of 
faults, possibly due mainly to the three reasons already mentioned. This 
is the history and the state of development of model-based diagnostics for 
turbosets. It is illustrated in Fig. 6.7. 

With regard to the current state of the development of dynamic models 
of turbosets [196] in general, it holds true for the: 
• simulation of some dynamic phenomena (vibration, support reaction, 

temperature, etc.) in good agreement with the experiment, 
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Fig. 6.7. Modern diagnostic systems of power-generating turbo sets (after Kicinski 1995) 

• modelling and simulation of some abnormal effects of operation, i.e. 
faults, 

• description of the resulting simulated condition in terms of a set of 
symptoms, which already have a good diagnostic meaning. 

In particular, the dynamic models mentioned in Fig. 6.7 permit one to 
simulate such faults as: 
• unbalance at any point of the shaft and rotor, 
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• different types of oil instabilities in journal bearings, 
• the evolution of the operational line of the shaft and the resulting po­

sition of bearing supports, 
• cracks in a rotor and shaft and the evolution of the cross-section due 

to erosion, 
• the change in the stiffness of bearing supports, 
• abnormal electromagnetic forcings from the side of the generator, 
• condition evolution in journal bearings, 
• the misalignment of the shaft and couplings. 

This can be checked under the given simulated operational conditions, 
and will validate the existence and intensity of faults in terms of diag­
nostic symptoms and operational parameters. The dynamic model also 
permits one to simulate the dynamic behaviour under measured opera­
tional conditions and to look for the causes of observed abnormalities. 
In addition, simulations with modified operational parameters dependent 
on the structural parameters lead to an assessment of future conditions. 
The computational expenditure is very high, as reported in [196]. For low­
pressure casing the dynamic FE-model has 60,000 DOF, and it contains at 
least two nonlinear and non-stationary models of slide bearings. 

Consequently, model-based diagnosis in its general sense can be a very 
powerful tool for application in mechanical engineering systems, and this 
field is also still at the research stage. There are reports that several turbine 
producers are working extensively on the appropriate developments. 

6.3 
Application in Civil Engineering: Norderelb Bridge 

In connection with the expert system SAMBA already mentioned, the 
Norderelb bridge in Hamburg served as a benchmark test [111]. It is a 
real, existing system which is modelled by finite elements and tested us­
ing the traffic as excitation in order to identify the eigenfrequencies and 
normal modes in a certain frequency range. These results are taken as a 
reference. The damage artificially and only theoretically introduced follows 
the experience with the (first) FE-model, which did not fit the estimates 
from the test. Because the reason for the misfit between the calculated and 
the estimated eigenquantities was discovered afterwards, it is taken here 
as an example of a damage demonstration. It must be emphasized again 
that the damage discussed was not real damage to the bridge! Because the 
FE-model of this Gedankenexperimenf5 fits the measured quantities very 
well, the adjustment of this model is not presented here. However, the 
adjustment of FE-models has already been illustrated in Sect. 6.1. 

5 Thought-experiment 
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6.3.1 
The System and its Model 

The system. The main characteristics of the Norderelb motorway bridge 
are: it is a cable-stayed steel bridge consisting of five fields of 31 m - 64 m -
171 m - 64 m - 80 m, a total span of 410 m, and built as a support bridge. 
The superstructure consists of four main girders with load-distributing 
lateral disks. Together with the roadway and the ground plate, the two 
inner main girders form a stiff torsional box girder. In the middle span 
the main outside girders were included in the box girder by bracings. 
Two groups of four cables are led above each of the two pylons. The 
main girders are supported by the cables at four points of the main span. 
Their diameter is 11.2cm and their nominal strength is 1570N/mm2• They 
are fixed in the pylons. The remaining superstructure consists of steel 
(5t 37 and 5t 52 according to DIN). The roadway girder is supported by 
two abutments, four (two x two) hinged supports and the two pylons. 
Figure 6.8 shows an overview drawing of the bridge. Figure 6.9 illustrates 
details of the cross-section of the middle span. The cross-section of the 
end field is an open one. Figure 6.10 is a photograph of the bridge. 

The FE-model. The FE-modelling and the following calculations are per­
formed by the program NA5TRAN. QUAD4 and TRIA elements are used 

I 31.0 
64.0 42.73 

4\0.836 
42.73 I 64.0 79.95 

]I II 
Fig. 6.8. Overview drawing 
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Fig. 6.10. The Norderelb bridge 

for roadway, main girders, ground plate and lateral disk. Bracings, ribs, and 
pylons are modelled by beam elements. Each of the 32 cables is represented 
by a rod element. Generally, cables are strongly nonlinear members. How­
ever, due to their high pre-stressing, the tension stresses will not change to 
compression during service6 • Consequently, linear dynamics will represent 
their behaviour well. Some further details (Young's modulus etc.) are given 
in [202] and [203]. The associated undamped model will be considered. A 
total of about 2000 elements (approximately 7000 static DOP) are used. 

Modal quantities are chosen and calculated, although they may not 
generally be the most sensitive quantities (symptoms) for indicating local 
damage. However, 
• no forces are required for calculating eigenquantities 
• "they are very popular in application" 
• the eigenfrequencies have some spatial properties through their orders 

(ranking) 
• the mode shapes (displacements) are insensitive with respect to local 

faults, but the 2nd and 3rd spatial derivatives (moments and shear 
forces of a beam element) are very sensitive to them [29] (differentiation 
of calculated or measured modes must not be performed; it can be 
substituted by integration using the equation of motion [9]). 

In this example, that means with the assumed (and simulated) damage, it 
is proved that the eigenquantities are good symptoms, as will be shown in 
Sect. 6.3.4. The calculated eigenfrequencies and normal modes are shown 

6 It is emphasized that only forces due to the traffic are considered. For example, the self­
excitation of the cables is excluded in these investigations. 
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c;;;P 

Fig. 6.11. Calculated eigenfrequencies and normal modes 
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in Fig. 6.11. The fieldwise vibration with the coupling of the fields is typical 
of this type of system. The reader's attention is drawn to the second mode, 
which shows a non-negligible deflection only in the end field. This is due 
to its span width and the change in the cross-section. 

6.3.2 
Identification of Eigenquantities 

The test. Four reference geophones and, additionally, eight geophones are 
used blockwise. The latter are moved fieldwise during the measurements. 
A description of the modes was possible with this arrangement. Because of 
the importance of the motorway bridge investigated, stopping the traffic 
was impossible, and therefore it was taken as excitation. It was assumed 
as broadband noise, in the knowledge, of course, that the traffic, especially 
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that of trucks, is an interaction problem with the bridge. For simplicity 
it is assumed, however, that data processing will reduce these introduced 
errors. Measurements were performed for a measuring time of 60 minutes. 

Results. The frequency response functions had been estimated in the lab­
oratory. The amplitude spectra at the reference points were performed in 
an initial step of the analysis process. Blocks of 8192 elements were there­
fore formed in the time domain, and this led to a frequency step of 0.0066 
Hz at a sampling frequency of 54 Hz. Such a short frequency step was 
necessary due to the poorly damped steel system. 1400 amplitude spectra 
had to be calculated and averaged for each reference point. Random er­
rors were thus reduced, and the curves were smoothed. Figure 6.12 gives 
an example of an averaged amplitude spectrum. SDOF models serve for 
the determination of the eigenfrequencies and mode components. Their 
estimates are obtained by averaging only 350 quantities in order to re­
duce the expenditure. Modal vector components, especially for the modes 
of the lower eigenfrequencies, were corrected by the use of the frequency 
response functions of the transducers (the lower limiting frequency of the 
geophones is 1 Hz) in order to obtain the correct phase relation which 
describes the relative sign of the modal components. 

Because the absolute values of the estimated normal modes graphi­
cally show no quantitative difference from the calculated modes shown in 
Fig. 6.11, the quantitative comparison between the identified and calculated 
eigenquantities is given directly in the following. 

0.8 
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0.2 

o~==~--~----~--~--~----~--~--~ 
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Fig. 6.12. Example of an averaged amplitude spectrum 
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6.3.3 
Comparison of Calculated and Estimated Eigenquantities 

Table 6.6 contains the calculated and identified results. The mode descrip­
tion characterizes the main deflections of the mode. The relative differences 

Table 6.6. Comparison of identified and calculated eigenfrequencies and modes 

DESCRIPTION EIGENFREQUENCY [Hz] DIFFERENCE MAC 

OF MODES CALCULATED MEASURED % 

1.VERTICAL BENDING 0.79 0.756 ± 0.0021 3.3 0.997 

2.VERTICAL BENDING 1.15 1.157 ± 0.0033 0.6 0.907 

3.VERTICAL BENDING 1.32 1.307 ± 0.0051 1.3 0.887 

4.VERTICAL BENDING 1.99 1.911 ± 0.0043 4.1 0.932 

1.TORSION 1.21 1.173 ± 0.0054 3.2 0.996 

2.TORSION 1.56 1.574 ± 0.0065 0.9 0.972 

3.TORSION 2.35 2.274 ± 0.0069 3.3 0.832 

4.TORSION 2.56 2.500 ± 0.0053 2.4 0.887 

between the calculated and identified eigenfrequencies are relatively small. 
The last column contains the values of the MAC (see Sect. 2.2.2) for the 
calculated and measured eigenvectors. The MAC is the cosine of the angle 
between the calculated and identified eigenvectors. In the ideal case this 
value is identical to 1. As can be seen, the eigenvectors agree relatively 
well with each other. 

Dependent on the catalogue of faults, it now has to be decided whether 
the used FE-model is usable. If not, it has to be adjusted in order to serve 
as a reference model. A correction of the FE-model will not be performed 
here, because, as will be seen next, the FE-model is usable for the detection 
and localization. 

6.3.4 
Simulated Damage 

Damage description. The lower chord of the main girders is build as a 
bottom flange. The cross-section is closed in the middle field of the bridge, 
and in this area the stiffness is mainly determined by the ground plate. 
However, in the end field, defined by the large deflection of the 2nd vertical 
bending mode (see Fig. 6.11), the bottom flanges of the longitudinal girders 
are essential. It is assumed that these flanges are completely missing: the 
stiffnesses of the bottom flanges in the end field are removed in the related 
FE-model. 

Effect of the damage on the eigenquantities. The damage simulated in this 
way leads to the simulated eigenquantities as shown in Table 6.7. Again, a 
comparison of the eigenquantities of the (simulated) damaged system with 
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Table 6.7. Comparison of the eigenquantities of the damaged system and the reference values 

EIGENFREQUENCY [Hz] 

DESCRIPTION DAMAGED DIFFERENCE MAC 

OF MODES REFERENCE SYSTEM % 

(SIMULATED) 

I.VERTICAL BENDING 0.765 0.79 3.3 0.985 

2.VERTICAL BENDING 1.157 0.89 -23.0 0.860 

3.VERTICAL BENDING 1.307 1.23 -5.9 0.562 

4.VERTICAL BENDING 1.911 2.04 6.8 "='0 

I.TORSION 1.173 1.23 4.9 0.994 

2.TORSION 1.574 1.68 6.7 0.960 

3.TORSION 2.274 4.2 0.818 

4.TORSION 2.500 
2.37 

-5.2 0.120 

5.TORSION 2.652 2.60 -2.0 0.938 

6.TORSION 3.600 3.50 -2.8 0.922 

the corresponding quantities of the reference model is now presented. The 
effect is enormous. The 2nd bending eigenfrequency shows a reduction of 
23% as an effect only of the stiffness reduction in the end field. The related 
mode (see Fig.6.1l) does not differ in its shape from the corresponding 
mode of the undamaged system. Most of the MAC values differ signifi­
cantly from 1. This is mainly due to the changed signs of the modal vector 
components (not shown). By comparison with the reference model, the 
number of DOF (of normal modes) is now reduced. This is astonishing, 
when one looks at the stiffness modification in the end field. Here a so­
phisticated decision based on a significance test is unnecessary. This result 
shows the strong stiffness coupling of the various fields of the bridge. 

The eigenquantities permit the detection and localization of the as­
sumed damage, and therefore they are good symptoms in the example 
considered. The 2nd bending mode shows the main deflection in the end 
field (damaged as well as undamaged). The eigenfrequency of the damaged 
system is much smaller than that of the undamaged system; consequently, 
something has happened regarding stiffness reduction (or added masses) 
in this vibrating field. Inspection will confirm the result. 

Consequently, the reverse method, namely the adjustment of the refer­
ence model, can easily be performed by looking at the used and known 
FE-models. The diagnosis is easy to perform with the available knowledge. 
Assessment will lead to action. 

6.4 
Conclusion 

The academic example illustrates the difficulties ansmg from the ill­
conditioning of the spatially discretized model in model adjustment, for-
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mulated as an inverse problem. However, this problem seems to have been 
overcome with the application of regularization methods. 

The discussion of the state of science in diagnostics in the field of me­
chanical engineering emphasizes the importance of mathematical models 
of the dynamic behaviour. The difficulty here is to model the local non­
linearities which must be included in order to understand the system's 
dynamics. Additionally, adjustment of the model of the system condition 
and that for damage evolution can be provided. 

The real world example of the bridge, except for the damage introduced 
(possibly unrealistically) and used, indicates that FE-modelling and model 
adjustment to the recent (measured) state enables the user, by means of 
a suitable choice of measured quantities and resulting estimates (symp­
toms, and information condensation!), to detect and localize faults of the 
system under investigation. An assessment results from the comparison 
of the recent model with the reference model, as described above. In the 
benchmark test discussed here the model-based diagnosis works well. 
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Concluding Remarks 

Signal and signature supported diagnosis are well known and have already 
been introduced for the monitoring and diagnosis of (vibrating) systems 
in operation. Higher demands with respect to the safety and lifetimes of 
systems require efficient and automatically elapsing tools for assessment 
and decision. From the economic point of view, the costs of development, 
and during operation/service of a system, can be lowered if the faults of a 
system are detected early and their evolution is known. Assessment of such 
faults then leads to action in time, and avoids subsequent costs. The costs 
of monitoring itself can also be lowered if the monitoring is performed 
state-dependent and event-dependent, and not periodically. With regard 
to machines the importance of monitoring and diagnostics is obvious, 
because condition monitoring was introduced in this field of application 
much earlier than in other technical fields. For civil engineering systems it 
is obvious that the deteriorating infrastructure and environment both pose 
challenging problems for engineering and diagnostics as well. It would be a 
great contribution to society if engineers could save even a fraction of the 
percentage of the cost by improving the present method of maintaining 
the infrastructure [204] and by designing in a new, more service-orientated 
manner. Efficient diagnosis procedures are the basis for economic renewal 
engineering. 

Model-based diagnostics is theoretically an optimum method for dam­
age detection, localization and assessment, because verified, validated and 
usable mathematical models at every state condition are the best knowl­
edge base available. The expenditure is great. However, dependent on the 
complexity and criticality of the system and its societal and economic 
importance, the expenditure on monitoring, measurements and the subse­
quent computations can be much lower than any other approach required 
to achieve the necessary safety and performance, not to mention the break­
down costs. 

The recent advancement in computational engineering (software, hard­
ware, and numerical methods), the development in measuring techniques 
and in system identification encouraged the authors to propose and to 
discuss the system identification-based methodology for diagnosis. 

As already stated, model-based diagnosis is discussed from a method­
ological point of view; this means that the intention is to provide the reader 
with a stimulus and an overview of some methods, so that he/she will be 
able to start the investigation of his/her particular problem. 
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To summarize (see Fig. 5.1): 
• health monitoring has to use symptoms, and smart or intelligent mon­

itoring systems with built-in sensors and a knowledge base are recom­
mended; 

• a measurement basis for model adjustment is required which demands 
an appropriate data set of measured values and/or identified quanti­
ties containing the information required (related measuring techniques 
should be known, the data processing background has to be known, 
too, and the available hardware and software should not be used as a 
black box in order to avoid misinterpretations and additional errors); 

• after the decision concerning significant modifications between the 
model and measured quantities, the adjustment has to be performed 
using a global and/or a local model; 

• a detailed investigation of the adjusted mathematical model(s) together 
with the previously theoretical studies will give a diagnostic result and 
assessment of the apparent system modifications (faults, damage) which 
will lead to a basis for actions. 

Modified forces and environmental conditions have to be taken into ac­
count, of course. Environmental parameters and (resulting) special condi­
tions, such as pre-stressing, have to be known and registered or taken as 
additional loads in the particular case. 

The quality of the models used is decisive in the procedures discussed. 
The results will only be as informative as the models are able to describe 
the required properties. One has to distinguish between global identifi­
cation and local identification. This is discussed through the distinction 
between dynamic models and static models when subsystem modelling is 
considered. Dependent on the criteria decisive for assessment, it can be 
necessary, after fault localization, to use an expanded static submodel for 
that part of the system where the damage affects safety, performance, or 
comfort. Or it may be necessary, too, to introduce a damage model in 
order to obtain detailed information about the extent of the damage. One 
will obtain what one introduces as information! These facts require adap­
tive models, but it may be a long path until a procedure which uses such 
adaptive models is achieved. 

The future aim in diagnosis will be to use smart sensors, to incorporate 
self-learning, and to use adaptive models. Smart sensors are discussed in 
[205]; they include data processing and some knowledge base combined 
with conclusion rules. The next step can be smart systems, where the smart 
sensors are a part of the construction. Consideration may be given further 
to active systems, which allow a change of the load paths due to mod­
ified external conditions (adaptive elastomechanical systems, which can 
be realized, for example, with additional active elements: feedback control 
by sensed system modifications or external loading [206]). An initial and 
simple step in the direction of self-learning is already implemented here 
with the application of recursive estimation procedures. Adaptive models 
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should take into account expected and predicted damage and the resulting 
changed external forces in order automatically to perform an assessment 
and trend prediction. 

The effect of these future developments can be enormous with regard 
to the montoring, diagnosis, safety and integrity of systems, and, of course, 
the related decrease in total costs. Identification algorithms, for example, 
will be influenced by the application of neural networks (see, for example, 
[207]). 

The content of the book is restricted to linear models, although non­
linear system behaviour is discussed partially. In each application a check 
has to be made as to whether this assumption will be approximately valid 
(property-dependent and purpose-equivalent), For systems behaving non­
linearly, the reader's attention is drawn to [208] and the references cited 
in it. 
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